# Neural network layers as parametric spans

mattiagbergomi@gmail.com, pietro.vertechi@protonmail.com

### Structure

- Context:
  - neural networks,

  - the *zoo* of linear neural network layers,
    commonalities among different linear layers.

### Structure

- Context:
  - neural networks,
  - the zoo of linear neural network layers,
  - commonalities among different linear layers.
- General definition of linear layer:
  - Frobenius integration theory,
  - parametric span.

### Structure

- Context:
  - neural networks,
  - the zoo of linear neural network layers,
  - commonalities among different linear layers.
- General definition of linear layer:
  - Frobenius integration theory,
  - parametric span.
- Interpret classical layers in the light of this general definition:
  - dense layer,
  - convolutional layer,
  - geometric deep learning.

# Neural networks: stack "simple" layers to approximate complex functions



Image credits: <u>https://github.com/poloclub/cnn-explainer</u>



See supplementary video (credits: <u>https://github.com/poloclub/cnn-explainer</u>).

Categories for AI

Many linear layers exist:

- dense layer,
- planar convolution,
- transposed convolution,
- group-equivariant convolution,
- graph convolution,
- diffusion convolution,
- geodesic convolution,
- anisotropic convolution,
- ...

Many linear layers exist:

- dense layer,
- planar convolution,
- transposed convolution,
- group-equivariant convolution,
- graph convolution,
- diffusion convolution,
- geodesic convolution,
- anisotropic convolution,
- ...

Each with their own set of hyperparameters.

Many linear layers exist:

- dense layer,
- planar convolution,
- transposed convolution,
- group-equivariant convolution,
- graph convolution,
- diffusion convolution,
- geodesic convolution,
- anisotropic convolution,
- ...

Each with their own set of hyperparameters.

Question 1. What are the *defining features* of a linear layer?

Many linear layers exist:

- dense layer,
- planar convolution,
- transposed convolution,
- group-equivariant convolution,
- graph convolution,
- diffusion convolution,
- geodesic convolution,
- anisotropic convolution,
- ...

Each with their own set of hyperparameters.

**Question 1.** What are the *defining features* of a linear layer? **Question 2.** Is there a space of *all* linear layers?

#### Categories for AI





### General requirements

Bilinearity.

The output value is separately linear in the input value and in the weights.



# General requirements

Bilinearity.

The output value is separately linear in the input value and in the weights.



# General requirements

#### Bilinearity.

The output value is separately linear in the input value and in the weights.

Duality.

The dual (also known as adjoint, or backward pass) exists and is again a linear layer.

# Domain-specific requirements

#### Equivariance.

Convolutional layers owe their success to the notion of equivariance (weight sharing).



Adapted from Kayan & Gemert (2020).

Categories for AI

# Domain-specific requirements

#### Equivariance.

Convolutional layers owe their success to the notion of equivariance (weight sharing).



Adapted from Kayan & Gemert (2020).

# Domain-specific requirements

#### Equivariance.

Convolutional layers owe their success to the notion of equivariance (weight sharing).



Adapted from Kayan & Gemert (2020).

### Locality.

If there is spatial structure, the inputs of a given output should be localized in space.



Adapted from Bronstein et al. (2017).

Give a general unifying definition of linear layer that

• respects bilinearity and duality (easily computable backward pass),

Give a general unifying definition of linear layer that

- respects bilinearity and duality (easily computable backward pass),
- incorporates local connectivity and equivariance constraints (weight sharing),

Give a general unifying definition of linear layer that

- respects bilinearity and duality (easily computable backward pass),
- incorporates local connectivity and equivariance constraints (weight sharing),
- works on a variety of different spaces, both discrete and continuous.

Give a general unifying definition of linear layer that

- respects bilinearity and duality (easily computable backward pass),
- incorporates local connectivity and equivariance constraints (weight sharing),
- works on a variety of different spaces, both discrete and continuous.

Key ingredients.

- Frobenius integration theories
  - formalize (via category theory) the interplay between functions and measures,
  - naturally lead to bilinearity and duality,
  - can be applied to smooth manifolds (*continuous* layers) or finite sets (*discrete* layers).

Give a general unifying definition of linear layer that

- respects bilinearity and duality (easily computable backward pass),
- incorporates local connectivity and equivariance constraints (weight sharing),
- works on a variety of different spaces, both discrete and continuous.

Key ingredients.

- Frobenius integration theories
  - formalize (via category theory) the interplay between functions and measures,
  - naturally lead to bilinearity and duality,
  - can be applied to smooth manifolds (*continuous* layers) or finite sets (*discrete* layers).
- Parametric spans
  - formalize locality and weight sharing,
  - recover classical linear neural network layers, both discrete and continuous.

Let X be a smooth manifold and let us denote

•  $\mathcal{F}(X)$  the space of smooth real-valued functions on X,

Let X be a smooth manifold and let us denote

- $\mathcal{F}(X)$  the space of smooth real-valued functions on X,
- $\mathcal{M}(X)$  the space of smooth densities (of compact support) on X,

Let X be a smooth manifold and let us denote

- $\mathcal{F}(X)$  the space of smooth real-valued functions on X,
- $\mathcal{M}(X)$  the space of smooth densities (of compact support) on X,
- $\int_X$  the integral.

Let  $\boldsymbol{X}$  be a smooth manifold and let us denote

- $\mathcal{F}(X)$  the space of smooth real-valued functions on X,
- $\mathcal{M}(X)$  the space of smooth densities (of compact support) on X,
- $\int_X$  the integral.

Structure.

- $\mathcal{F}(X)$  is a commutative  $\mathbb{R}$ -algebra:
  - linear combinations of smooth functions,
  - pointwise multiplication of smooth functions.

Let X be a smooth manifold and let us denote

- $\mathcal{F}(X)$  the space of smooth real-valued functions on X,
- $\mathcal{M}(X)$  the space of smooth densities (of compact support) on X,
- $\int_X$  the integral.

#### Structure.

- $\mathcal{F}(X)$  is a commutative  $\mathbb{R}$ -algebra:
  - linear combinations of smooth functions,
  - pointwise multiplication of smooth functions.
- $\mathcal{M}(X)$  is an  $\mathcal{F}(X)$ -module:
  - linear combinations of smooth densities,
  - pointwise multiplication of a smooth density by a smooth function.

Let X be a smooth manifold and let us denote

- $\mathcal{F}(X)$  the space of smooth real-valued functions on X,
- $\mathcal{M}(X)$  the space of smooth densities (of compact support) on X,
- $\int_X$  the integral.

### Structure.

- $\mathcal{F}(X)$  is a commutative  $\mathbb{R}$ -algebra:
  - linear combinations of smooth functions,
  - pointwise multiplication of smooth functions.
- $\mathcal{M}(X)$  is an  $\mathcal{F}(X)$ -module:
  - linear combinations of smooth densities,
  - pointwise multiplication of a smooth density by a smooth function.
- $\int_X$  is an  $\mathbb{R}$ -linear functional on  $\mathcal{M}(X)$ :
  - integrating a smooth density yields a real number.

**Definition.** We say that a smooth map

 $f\colon X \to Y$ 

is a *submersion* if its differential is, at every point, surjective.



**Definition.** We say that a smooth map

 $f\colon X \to Y$ 

is a *submersion* if its differential is, at every point, surjective.

Inverse function theorem. For each point  $p \in Y$ , the *fiber* 

$$X_p := f^{-1}(\{p\})$$

is a submanifold of X.



**Definition.** We say that a smooth map

 $f\colon X \to Y$ 

is a *submersion* if its differential is, at every point, surjective.

**Inverse function theorem.** For each point  $p \in Y$ , the *fiber* 

$$X_p := f^{-1}(\{p\})$$

is a submanifold of X.

**Integration along fibers.** Transform a quantity on X into a quantity on Y (linear pooling).



Structure.

 ${\mathcal F}$  and  ${\mathcal M}$  are functors of opposite variance.

A smooth submersion  $f \colon X \to Y$  induces

- an algebra homomorphism  $f^*\colon \mathcal{F}(Y) o \mathcal{F}(X)$  (function pullback, given by precomposition),
- an  $\mathbb{R}$ -linear map  $f_* \colon \mathcal{M}(X) \to \mathcal{M}(Y)$  (density pushforward, given by integration along fibers).

Structure.

 ${\mathcal F}$  and  ${\mathcal M}$  are functors of opposite variance.

A smooth submersion  $f \colon X \to Y$  induces

- an algebra homomorphism  $f^*\colon \mathcal{F}(Y) o \mathcal{F}(X)$  (function pullback, given by precomposition),
- an  $\mathbb{R}$ -linear map  $f_* \colon \mathcal{M}(X) \to \mathcal{M}(Y)$  (density pushforward, given by integration along fibers).

### **Properties.**

Furthermore, for all  $\mu \in \mathcal{M}(X)$  and  $y \in \mathcal{F}(Y)$ ,

•  $f_*(f^*y\cdot\mu)=y\cdot f_*\mu$  (Frobenius reciprocity),

Structure.

 ${\mathcal F}$  and  ${\mathcal M}$  are functors of opposite variance.

A smooth submersion  $f \colon X \to Y$  induces

- an algebra homomorphism  $f^*\colon \mathcal{F}(Y) o \mathcal{F}(X)$  (function pullback, given by precomposition),
- an  $\mathbb{R}$ -linear map  $f_* \colon \mathcal{M}(X) \to \mathcal{M}(Y)$  (density pushforward, given by integration along fibers).

### Properties.

Furthermore, for all  $\mu \in \mathcal{M}(X)$  and  $y \in \mathcal{F}(Y)$ ,

- $f_*(f^*y\cdot\mu)=y\cdot f_*\mu$  (Frobenius reciprocity),
- $\int_X \mu = \int_Y f_* \mu$  (Fubini's theorem).

Structure.

 ${\mathcal F}$  and  ${\mathcal M}$  are functors of opposite variance.

A smooth submersion  $f \colon X \to Y$  induces

- an algebra homomorphism  $f^* \colon \mathcal{F}(Y) o \mathcal{F}(X)$  (function pullback, given by precomposition),
- an  $\mathbb{R}$ -linear map  $f_* \colon \mathcal{M}(X) \to \mathcal{M}(Y)$  (density pushforward, given by integration along fibers).

#### **Properties.**

Furthermore, for all  $\mu \in \mathcal{M}(X)$  and  $y \in \mathcal{F}(Y)$ ,

- $f_*(f^*y\cdot\mu)=y\cdot f_*\mu$  (Frobenius reciprocity),
- $\int_X \mu = \int_Y f_* \mu$  (Fubini's theorem).

As a consequence,  $f_*$  and  $f^*$  are "adjoint" operators:  $\int_X f^* y \cdot \mu = \int_Y y \cdot f_* \mu$ .

Structure.

 ${\mathcal F}$  and  ${\mathcal M}$  are functors of opposite variance.

A smooth submersion  $f \colon X \to Y$  induces

- an algebra homomorphism  $f^* \colon \mathcal{F}(Y) \to \mathcal{F}(X)$  (function pullback, given by precomposition),
- an  $\mathbb{R}$ -linear map  $f_* \colon \mathcal{M}(X) \to \mathcal{M}(Y)$  (density pushforward, given by integration along fibers).

#### **Properties.**

Furthermore, for all  $\mu \in \mathcal{M}(X)$  and  $y \in \mathcal{F}(Y)$ ,

- $f_*(f^*y\cdot\mu)=y\cdot f_*\mu$  (Frobenius reciprocity),
- $\int_X \mu = \int_Y f_* \mu$  (Fubini's theorem).

As a consequence,  $f_*$  and  $f^*$  are "adjoint" operators:  $\int_X f^* y \cdot \mu = \int_Y y \cdot f_* \mu$ .

**Punch line.**  $f_*$  is the backward pass of  $f^*$  and vice versa.
Propositions 1 and 2. All the structures and properties defined above can be succinctly described as a functor

 $\mathbf{Subm} \to \mathbf{Gr}(\mathbf{Mod}/\mathbb{R}),$ 

where **Subm** is the category of smooth manifolds and submersions.

Propositions 1 and 2. All the structures and properties defined above can be succinctly described as a functor

 $\mathbf{Subm} \to \mathbf{Gr}(\mathbf{Mod}/\mathbb{R}),$ 

where **Subm** is the category of smooth manifolds and submersions.

Intuition on  $\mathbf{Gr}(\mathbf{Mod}/\mathbb{R})$ .

• For a commutative  $\mathbb{R}$ -algebra A, we construct  $\mathbf{Mod}_A/\mathbb{R}$ , the category of A-modules with an  $\mathbb{R}$ -linear functional.

Propositions 1 and 2. All the structures and properties defined above can be succinctly described as a functor

 $\mathbf{Subm} \to \mathbf{Gr}(\mathbf{Mod}/\mathbb{R}),$ 

where **Subm** is the category of smooth manifolds and submersions.

Intuition on  $\mathbf{Gr}(\mathbf{Mod}/\mathbb{R}).$ 

- For a commutative  $\mathbb{R}$ -algebra A, we construct  $\mathbf{Mod}_A/\mathbb{R}$ , the category of A-modules with an  $\mathbb{R}$ -linear functional.
- These categories form a functor  $\mathbf{Mod}/\mathbb{R} \colon \mathbf{CAlg}^{\mathrm{op}}_{\mathbb{R}} \to \mathbf{Cat}.$

Propositions 1 and 2. All the structures and properties defined above can be succinctly described as a functor

 $\mathbf{Subm} \to \mathbf{Gr}(\mathbf{Mod}/\mathbb{R}),$ 

where **Subm** is the category of smooth manifolds and submersions.

Intuition on  $\mathbf{Gr}(\mathbf{Mod}/\mathbb{R})$ .

- For a commutative  $\mathbb{R}$ -algebra A, we construct  $\mathbf{Mod}_A/\mathbb{R}$ , the category of A-modules with an  $\mathbb{R}$ -linear functional.
- These categories form a functor  $\mathbf{Mod}/\mathbb{R} \colon \mathbf{CAlg}^{\mathrm{op}}_{\mathbb{R}} \to \mathbf{Cat}.$
- We glue all these categories together by means of the *covariant Grothendieck construction* [1].

Propositions 1 and 2. All the structures and properties defined above can be succinctly described as a functor

 $\mathbf{Subm} o \mathbf{Gr}(\mathbf{Mod}/\mathbb{R}),$ 

where **Subm** is the category of smooth manifolds and submersions.

**Definition.** A functor from some category C to  $\mathbf{Gr}(\mathbf{Mod}/\mathbb{R})$  is a *Frobenius integration theory* on C.

Propositions 1 and 2. All the structures and properties defined above can be succinctly described as a functor

 $\mathbf{Subm} \to \mathbf{Gr}(\mathbf{Mod}/\mathbb{R}),$ 

where **Subm** is the category of smooth manifolds and submersions.

**Definition.** A functor from some category C to  $\mathbf{Gr}(\mathbf{Mod}/\mathbb{R})$  is a *Frobenius integration theory* on C.

### Examples.

There exist Frobenius integration theories based on

• smooth manifolds and submersions,

Propositions 1 and 2. All the structures and properties defined above can be succinctly described as a functor

 $\mathbf{Subm} \to \mathbf{Gr}(\mathbf{Mod}/\mathbb{R}),$ 

where **Subm** is the category of smooth manifolds and submersions.

**Definition.** A functor from some category C to  $\mathbf{Gr}(\mathbf{Mod}/\mathbb{R})$  is a *Frobenius integration theory* on C.

### Examples.

There exist Frobenius integration theories based on

- smooth manifolds and submersions,
- measurable spaces and nullset-preserving measurable functions (see manuscript),

Propositions 1 and 2. All the structures and properties defined above can be succinctly described as a functor

 $\mathbf{Subm} \to \mathbf{Gr}(\mathbf{Mod}/\mathbb{R}),$ 

where **Subm** is the category of smooth manifolds and submersions.

**Definition.** A functor from some category C to  $\mathbf{Gr}(\mathbf{Mod}/\mathbb{R})$  is a *Frobenius integration theory* on C.

### Examples.

There exist Frobenius integration theories based on

- smooth manifolds and submersions,
- measurable spaces and nullset-preserving measurable functions (see manuscript),
- finite sets and functions (exercise).

- The Grothendieck construction yields a global category  $\mathbf{Gr}(\mathbf{Mod}/\mathbb{R})$  that axiomatizes the behavior of
  - functions,
  - densities,
  - integrals.

- The Grothendieck construction yields a global category  $\mathbf{Gr}(\mathbf{Mod}/\mathbb{R})$  that axiomatizes the behavior of
  - functions,
  - densities,
  - integrals.
- A *Frobenius integration theory* is a functor to  $\mathbf{Gr}(\mathbf{Mod}/\mathbb{R})$ .

- The Grothendieck construction yields a global category  $\mathbf{Gr}(\mathbf{Mod}/\mathbb{R})$  that axiomatizes the behavior of
  - functions,
  - densities,
  - integrals.
- A Frobenius integration theory is a functor to  $\mathbf{Gr}(\mathbf{Mod}/\mathbb{R})$ .
- There is a natural Frobenius integration theory

 $\mathbf{Subm} \to \mathbf{Gr}(\mathbf{Mod}/\mathbb{R})$ 

on the category of smooth manifolds and submersions.

- The Grothendieck construction yields a global category  $\mathbf{Gr}(\mathbf{Mod}/\mathbb{R})$  that axiomatizes the behavior of
  - functions,
  - densities,
  - integrals.
- A Frobenius integration theory is a functor to  $\mathbf{Gr}(\mathbf{Mod}/\mathbb{R})$ .
- There is a natural Frobenius integration theory

 $\mathbf{Subm} \to \mathbf{Gr}(\mathbf{Mod}/\mathbb{R})$ 

on the category of smooth manifolds and submersions.

• Frobenius integration theories naturally lead to dualizable bilinear operators.

Spans









See supplementary video.







### Assumptions.

Frobenius integration theory on C.

E, X, W, Y are objects in  $\mathcal{C}$ .

 $s, \pi, t$  are morphisms in  $\mathcal{C}$ .



**Proposition 3.** A parametric span and  $\mu \in \mathcal{M}(E)$  induce a layer (separately  $\mathbb{R}$ -linear in x and w)

 $\mathcal{F}(X) imes \mathcal{F}(W) o \mathcal{M}(Y)$  $(x,w)\mapsto t_*(s^*x\cdot\pi^*w\cdot\mu).$ 

#### Assumptions.

Frobenius integration theory on C.

E, X, W, Y are objects in C.

 $s, \pi, t$  are morphisms in  $\mathcal{C}$ .



#### Assumptions.

Frobenius integration theory on C.

E, X, W, Y are objects in C.

 $s, \pi, t$  are morphisms in  $\mathcal{C}$ .

**Proposition 3.** A parametric span and  $\mu \in \mathcal{M}(E)$  induce a layer (separately  $\mathbb{R}$ -linear in x and w)

 $\mathcal{F}(X) imes \mathcal{F}(W) o \mathcal{M}(Y) 
onumber \ (x,w)\mapsto t_*(s^*x\cdot\pi^*w\cdot\mu).$ 

**Proposition 4.** The dual (backward pass) can be computed by permuting the legs of the parametric span.



#### Assumptions.

Frobenius integration theory on C.

E, X, W, Y are objects in C.

 $s, \pi, t$  are morphisms in  $\mathcal{C}$ .

**Proposition 3.** A parametric span and  $\mu \in \mathcal{M}(E)$  induce a layer (separately  $\mathbb{R}$ -linear in x and w)

 $\mathcal{F}(X) imes \mathcal{F}(W) o \mathcal{M}(Y) 
onumber \ (x,w)\mapsto t_*(s^*x\cdot\pi^*w\cdot\mu).$ 

**Proposition 4.** The dual (backward pass) can be computed by permuting the legs of the parametric span.

### Punch line.

Parametric spans can be used to define linear layers with

- local connectivity,
- weight sharing,
- computable backward pass.

Dense layer



### Dense layer

#### Features

- Domain: Discrete
- Symmetry: No symmetry

#### Parametric Span





Convolutional layer



Image credits: Đặng Hà Thế Hiển

Categories for AI

### Convolutional layer

#### Features

- Domain: Discrete & continuous
- Symmetry: Translation

#### Parametric Span





Image credits: Đặng Hà Thế Hiển

Convolutional layer

Features

- Domain: Discrete & continuous
- Symmetry: Translation

#### Parametric Span





Categories for AI

### Convolutional layer

#### Features

- Domain: Discrete & continuous
- Symmetry: Translation

#### Parametric Span





### Convolutional layer

#### Features

- Domain: Discrete & continuous
- Symmetry: Translation

#### Parametric Span





Geometric deep learning



Polar coordinates  $\rho, \theta$ 

Adapted from Monti et al. (2017).

Categories for AI

### Geometric deep learning

#### Features

- Domain: Discrete & continuous
- Symmetry: Learned

#### Parametric Span





Polar coordinates  $\rho, \theta$ 

Adapted from Monti et al. (2017).

• Parametric spans induce linear layers with local connectivity and weight sharing.

- Parametric spans induce linear layers with local connectivity and weight sharing.
- The backward pass of such layers can be computed by permuting the legs of the parametric span.

- Parametric spans induce linear layers with local connectivity and weight sharing.
- The backward pass of such layers can be computed by permuting the legs of the parametric span.
- Parametric spans in the category of manifolds and submersions encompass
  - dense layers,
  - convolutional layers and variations thereof,
  - many geometric deep learning layers.

- Parametric spans induce linear layers with local connectivity and weight sharing.
- The backward pass of such layers can be computed by permuting the legs of the parametric span.
- Parametric spans in the category of manifolds and submersions encompass
  - dense layers,
  - convolutional layers and variations thereof,
  - many geometric deep learning layers.
- Thus, we can define the *microstructure* of a single linear layer in categorical terms.

- Parametric spans induce linear layers with local connectivity and weight sharing.
- The backward pass of such layers can be computed by permuting the legs of the parametric span.
- Parametric spans in the category of manifolds and submersions encompass
  - dense layers,
  - convolutional layers and variations thereof,
  - many geometric deep learning layers.
- Thus, we can define the *microstructure* of a single linear layer in categorical terms.
- In the future, we plan to
  - incorporate nonlinearities,
  - encode *global neural architectures* (not just single layers).

- Parametric spans induce linear layers with local connectivity and weight sharing.
- The backward pass of such layers can be computed by permuting the legs of the parametric span.
- Parametric spans in the category of manifolds and submersions encompass
  - dense layers,
  - convolutional layers and variations thereof,
  - many geometric deep learning layers.
- Thus, we can define the *microstructure* of a single linear layer in categorical terms.
- In the future, we plan to
  - incorporate nonlinearities,
  - encode *global neural architectures* (not just single layers).
- Our overarching aim is to create a framework for neural architectures with the following properties:
  - modularity and composability [1],
  - existence and computability of duals for reverse-mode differentiation [2].

Vertechi, P., Frosini, P., & Bergomi, M. G. (2020). Parametric machines: a fresh approach to architecture search. arXiv preprint arXiv:2007.02777.
 Vertechi, P., & Bergomi, M. G. (2022). Machines of finite depth: towards a formalization of neural networks. arXiv preprint arXiv:2204.12786.
 Categories for AI