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Structure

Context:

neural networks,
the zoo of linear neural network layers,
commonalities among different linear layers.  

General definition of linear layer:

Frobenius integration theory,
parametric span.  

Interpret classical layers in the light of this general definition:

dense layer,
convolutional layer,
geometric deep learning.
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Neural networks: stack “simple” layers to approximate complex functions
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See supplementary video (credits: https://github.com/poloclub/cnn-explainer).
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How does one choose what layers to use?

Many linear layers exist:

dense layer,

planar convolution,

transposed convolution,

group-equivariant convolution,

graph convolution,

diffusion convolution,

geodesic convolution,

anisotropic convolution,

...
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group-equivariant convolution,

graph convolution,

diffusion convolution,

geodesic convolution,

anisotropic convolution,

...

Each with their own set of hyperparameters.

Question 1. What are the defining features of a linear layer?

Question 2. Is there a space of all linear layers?
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General requirements

Bilinearity.

The output value is separately linear in the input
value and in the weights.
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General requirements

Bilinearity.

The output value is separately linear in the input
value and in the weights.

Duality.

The dual (also known as adjoint, or backward
pass) exists and is again a linear layer.
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Equivariance.

Convolutional layers owe their success to the notion of
equivariance (weight sharing).

Adapted from Kayan & Gemert (2020).
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Equivariance.

Convolutional layers owe their success to the notion of
equivariance (weight sharing).

Adapted from Kayan & Gemert (2020).

Locality.

If there is spatial structure, the inputs of a given output
should be localized in space.

Adapted from Bronstein et al. (2017).

Domain-specific requirements
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Action plan

Give a general unifying definition of linear layer that

respects bilinearity and duality (easily computable backward pass),
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Action plan

Give a general unifying definition of linear layer that

respects bilinearity and duality (easily computable backward pass),

incorporates local connectivity and equivariance constraints (weight sharing),

works on a variety of different spaces, both discrete and continuous.

Key ingredients.

Frobenius integration theories

formalize (via category theory) the interplay between functions and measures,

naturally lead to bilinearity and duality,

can be applied to smooth manifolds (continuous layers) or finite sets (discrete layers).

Parametric spans

formalize locality and weight sharing,

recover classical linear neural network layers, both discrete and continuous.
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Frobenius integration theories

Let  be a smooth manifold and let us denote

 the space of smooth real-valued functions on ,
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Let  be a smooth manifold and let us denote

 the space of smooth real-valued functions on ,

 the space of smooth densities (of compact support) on ,

 the integral.

Structure.

 is a commutative -algebra:

linear combinations of smooth functions,
pointwise multiplication of smooth functions.

 is an -module:

linear combinations of smooth densities,
pointwise multiplication of a smooth density by a smooth function.

 is an -linear functional on :

integrating a smooth density yields a real number.
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X
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Frobenius integration theories

Definition. We say that a smooth map

is a submersion if its differential is, at every point, surjective.

Categories for AI Visualization powered by Makie and Beautiful Makie

f : X → Y
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Frobenius integration theories

Definition. We say that a smooth map

is a submersion if its differential is, at every point, surjective.

Inverse function theorem. For each point , the fiber

is a submanifold of .

Integration along fibers. Transform a quantity on  into a
quantity on  (linear pooling).

Categories for AI Visualization powered by Makie and Beautiful Makie

f : X → Y

p ∈ Y

X  :=p f ({p})−1

X

X

Y
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Frobenius integration theories

Structure.

 and  are functors of opposite variance.

A smooth submersion  induces

an algebra homomorphism  (function pullback, given by precomposition),

an -linear map  (density pushforward, given by integration along fibers).
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Structure.

 and  are functors of opposite variance.

A smooth submersion  induces

an algebra homomorphism  (function pullback, given by precomposition),

an -linear map  (density pushforward, given by integration along fibers).

Properties.

Furthermore, for all  and ,

 (Frobenius reciprocity),

 (Fubini's theorem).

As a consequence,  and  are "adjoint" operators: .

Punch line.  is the backward pass of  and vice versa.
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Frobenius integration theories

Propositions 1 and 2. All the structures and properties defined above can be succinctly described as a functor

where  is the category of smooth manifolds and submersions.
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Frobenius integration theories

Propositions 1 and 2. All the structures and properties defined above can be succinctly described as a functor

where  is the category of smooth manifolds and submersions.

Intuition on .

For a commutative -algebra , we construct , the category of -modules with an -linear functional. 

These categories form a functor . 

We glue all these categories together by means of the covariant Grothendieck construction [1].

Categories for AI

Subm → Gr(Mod/R),

Subm

Gr(Mod/R)

R A Mod  /RA A R

Mod/R : CAlg  →R
op Cat

[1] Spivak, D. I. (2019). Generalized Lens Categories via functors . arXiv preprint arXiv:1908.02202.C →op Cat
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Frobenius integration theories

Propositions 1 and 2. All the structures and properties defined above can be succinctly described as a functor

where  is the category of smooth manifolds and submersions.

Definition. A functor from some category  to  is a Frobenius integration theory on .

Examples.

There exist Frobenius integration theories based on

smooth manifolds and submersions,

measurable spaces and nullset-preserving measurable functions (see manuscript),

finite sets and functions (exercise).

Categories for AI

Subm→ Gr(Mod/R),

Subm

C Gr(Mod/R) C
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The Grothendieck construction yields a global category  
that axiomatizes the behavior of

functions,

densities,

integrals.

Take-home message
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The Grothendieck construction yields a global category  
that axiomatizes the behavior of

functions,

densities,

integrals.

A Frobenius integration theory is a functor to .

There is a natural Frobenius integration theory

on the category of smooth manifolds and submersions.

Take-home message
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The Grothendieck construction yields a global category  
that axiomatizes the behavior of

functions,

densities,

integrals.

A Frobenius integration theory is a functor to .

There is a natural Frobenius integration theory

on the category of smooth manifolds and submersions.

Frobenius integration theories naturally lead to dualizable bilinear operators.

Take-home message
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Gr(Mod/R)

Subm→ Gr(Mod/R)
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Spans
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Assumptions.  

Frobenius integration theory on .  

 are objects in .  

 are morphisms in .
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Assumptions.  

Frobenius integration theory on .  

 are objects in .  

 are morphisms in .

Proposition 3. A parametric span and  induce a
layer (separately -linear in  and )

Proposition 4. The dual (backward pass) can be computed
by permuting the legs of the parametric span.

Punch line.

Parametric spans can be used to define linear layers with

local connectivity,

weight sharing,

computable backward pass.

Parametric spans
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Classical architectures

Dense layer
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Features

Domain: Discrete
Symmetry: No symmetry
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Adapted from Monti et al. (2017).
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Geometric deep learning
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Adapted from Monti et al. (2017).

Features

Domain: Discrete & continuous
Symmetry: Learned

Parametric Span

Classical architectures

Geometric deep learning
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Conclusions and future directions

Parametric spans induce linear layers with local connectivity and weight sharing.
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Parametric spans induce linear layers with local connectivity and weight sharing.

The backward pass of such layers can be computed by permuting the legs of the parametric span.

Parametric spans in the category of manifolds and submersions encompass

dense layers,
convolutional layers and variations thereof,
many geometric deep learning layers.

Thus, we can define the microstructure of a single linear layer in categorical terms.

In the future, we plan to

incorporate nonlinearities,
encode global neural architectures (not just single layers).

Our overarching aim is to create a framework for neural architectures with the following properties:

modularity and composability [1],
existence and computability of duals for reverse-mode differentiation [2].
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