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Motivation

Representation Learning

Representation learning, also called
feature learning, is ubiquitous in ML.

Broadly, we seek a tractable
representation of data sampled from a
complex space.

This representation should preserve

structure within the data space, P ®
informing a down-stream task A ®
(regression, classification,

reconstruction, etc.). o




Motivation

Representation Learning

Let X = | X; be a space, viewed as the union of open sets X; € X.

Define a representation as a map F': X — V such that for any relationship g; ; : X; — X
in X, there exists an associated f; ; : ¢; — x; in V such that f; ;(F(X;)) = F(9:(X;)).

In machine learning, V' is almost always taken to be R™.

In practice, the most useful g maps are usually unknown F -

and the representation won’t precisely commute. / ‘/J?a
Inductive biases like local smoothness or the distribu-

tional hypothesis often fill this gap.

Let’s look at two examples: node embedding and graph signal processing.



Motivation

Node Embedding with DeepWalk

Let G = (V,E) be a graph. We seek F : V — R¢ which encodes the graph structure.

1. Generate a “corpus” R of node visits by aggregating random walks from each v € V.

2. Learn shallow embeddings via skip-gram with negative sampling (SGNS).

Result: nearby nodes in G are assigned similar vectors in R?.

Us
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Node Embedding with DeepWalk

Qiu et al. show that this node embedding procedure is implicitly matrix factorization.

Let P be the transition matrix for a random walk on G = (V, F).

As the walk length becomes infinite, DeepWalk embeddings approach a factorization of:
T

MPW (T) = log (V(fl(}) (Z PT)D_:l) flat representations
r=1

pw _ #Ww )R] p v(G) (1§ 1,
Mo = Gy 2T (d_vz wot - 2 (P >>

r=1 r=1

Qiu, Jiezhong, et al. "Network embedding as matrix factorization: Unifying deepwalk, line, pte, and
node2vec." Proceedings of the eleventh ACM international conference on web search and data mining. 2018.



Motivation

Graph Neural Networks

(0)

tures &, = x, € R% with dy channels: d(x, Y ¥)

‘ Y(xy, Tc) ﬂ
o0~ g [0, 3 wald,a) R
¢($b,wd)

Given a graph G = (V, E, A) with node fea- !

ueN (v)
\ ' 1 I \
“MPNN” /
P R4 x R% — R™ is a message function. ‘

¢ : R4 x R™ — R%+1 is a readout /update function.



Motivation

Graph Convolutional Networks (GCN)
H
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x U+ — (D‘l/QAD_l/QX(”W(l)>
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- (AXU) W<l>)
Transform by W® Diffuse by I — L

=0 ((1-L)xOW") / @ \

X = o (1= L)XOWO)

D = A1 is diagonal degree matrix.
L is the graph Laplacian. n CE)
\ AN
Repeated application of (I — L) I / —@ - /@—@
minimizes: (@) (d)
e(x;,G) = x; Lx;
_ Z Auv( } Dirichlet energy

(u,v)=eckE
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Graph Convolutional Networks

Fixing W) = I and stacking GCN
layers performs gradient descent on €¢(G, x;).

L=I-D'2AD™Y?
A deep GCN of this form will “learn” smooth LD A— &g ctomdmy/
node features: a degree-weighted local averaging — — — incidence matrix
dictated by the graph topology.

(u,v)=eeFE

The features will approach ker L (constant).
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Sheaves

Level 1

A (cellular) sheaf is a mathematical specification for associating data to a graph.

Level 2

A sheaf is a system of coefficients for computing cohomology.

Level 3

Primordial ooze

A sheaf is an equalizer of a set of constraints imposed by an open cover.

Level 4

A sheaf is a functor that satisfies some gluing axioms expressed by limits.



Sheaves

Level 4: Categorical Definition
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Sheaves

Categorical Definition

Let U = {U;} be an open cover of U in topological space X .

The nerve A4 (U) is a simplicial complex whose elements are subsets I = {ig, ..., i}

where Uy = U;, N---NU;, # 0.

Define the functor ¢ : A (U)°P? — Open(X)°P. The nerve organizes
into a category
——

o
/TINN
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Sheaves

Categorical Definition

A pre-sheaf valued in D is a functor F : Open(X)°? — D with restriction maps
Fvu : F(V)— F(U) between open sets U C V as morphisms.

The pre-sheaf F is a sheaf on U if the following unique map from F(U) to the limit of
F oy, is an isomorphism:

FU)~ lm F(U)
eV (U)

D must be complete.

]




Sheaves

Level 3: Sheaves as Equalizers

Note that lim F (U) — [[ F(U;): any cone must factor through each vertex.

Thus, a pre-sheaf is a sheaf if the following diagram is an equalizer:

v) S [ 7w :;HfUmU)

I+
= Fu.u, fij = Fijij o T fii = Fjaj o
_____ set function equalizer ~ ~ fiber . kemmel
Letting | [ F(U;) = A, Letting [[ F(U;) = A, Letting || F(U;) =V,
[Li.;, FU:nU;))=B L, FU;NU;) =B, - 1L, FUNT;) =W
. ff(a)=bVac A |

calf*. f7) = I VA calf*. ) =

f7) = |
{ac Al fH(a)=f"(a)} | (f7)"'(b)C A  ker(ft - f7) = kerld



Sheaves

Recap

Sheaves assign data to a space in a way which agrees with its topology.
F :Open(X)? - D

This consistent data assignment sits within the product of the nerve vertices.
lim F(U) = [[ F(U:)

Sheaves are equalizers of the diagram taking the product of vertices to the product of their
pairwise intersections under individual restriction onto their intersections.

FU) S T 7 L [17w:nu;)
ft inj

When D is Vect, we can compute sheaves as kernels.

F(U) Zker(fT — f~) =kerd



Cellular Sheaves

Cellular Sheaves

ab

acC




Cellular Sheaves

Graph Topology

We are already familiar with how a graph G = (V, E') can be encoded as a cell complex.

Vertices v € V are 0-cells, edges e € E are 1-cells.

Generate an open cover from the star st(o) of each cell o. M

Product space derived from the product of Alezandrov topology
vertex representations [ [ .. F(v).

Restriction to edges | [ . F(e) is cover intersection. MM

f*, f~,0 map vertices to edges according to incidence. /
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Towards Applications

To define a sheaf, we require: Within machine learning, these are often:
A topological space X Given
An open set U C X and an open cover U on U. Ignored
A data category D Assumed FVect

Restriction maps Fyy: V = U [gnored /Trivial




Cellular Sheaves

Sheaves on Graphs

A cellular sheaf F on a graph G = (V, E) consists of the following
data:

e a vector space F(v) for each vertex v € V,
Stalks
e a vector space F(e) for each edge e € F,

e a linear map F, g, : F(v) = F(e) for each incident vertex-

edge pair v<e of G. Restriction Maps

F(e)

+




Cellular Sheaves

Sheaves on Graphs

Define the F-valued space of signals on vertices and edges, respectively by:

CUG,F) = @ F(v) Space of 0-cochains
veV

CHG; F) = @ F(e) Space of 1-cochains
ec

For F vector-valued, we may view x € C(G; F) as a concatenation of vectors.

Choose sections Assocnt ed nodes

Fv<]e

Fude Fude < < Fuge <
@Eﬂ m@ if : " " ]

: ® - ©




Cellular Sheaves

Sheaves on Graphs

The coboundary map 6 : C°(G; F) — C1(G; F) computes along edge e = (u,v):

(5X)€ :‘F’UQGX’U _fuglexu
\_'_l \ )




Cellular Sheaves

Sheaves on Graphs

The space of globally-consistent assignments of data to the vertices of G is 1somorophic to:
HY(G; F) =keré c C°(G; F)

Thus, given restriction maps F, g. for each vertex-edge pair, data representations
consistent with the topology of G may be computed by computing ker o.

§: CY(G; F) — CY(G; F) takes signals on nodes to (oriented) signals on edges.

If we mapped these signals which have been transformed by restriction maps back down to
the nodes, would this define a gradient operator which performs diffusion/message passing?



Cellular Sheaves

Sheaves on Graphs

Given coboundary 0 we may define the sheaf Laplacian L as:

Lr=6"6

?T F T
vldeY vde —J UQGJ ude
_|_\ ~ T X ~ Jakob Hansen' - Robert Ghrist'-2
_“ u g] e: (V) <] € “ : u < e Received: 4 August 2018 / Accepted: 16 August 2019 / Published online: 30 August 2019

© The Author(s) 2019

(LFX)U — Z f;l)_g e(}.’ugleva — j:ugexu) Abstract

This paper outlines a program in what one might call spectral sheaf theory-

Toward a spectral theory of cellular sheaves

=
o5
uﬁ
4

|

u,v Je

XTL]—"XZ Z Hj:vglexv_j:uﬁeXUHQ = E(x, F)

u,v Jde

E(x,F)=x'"Lrx =0 implies x € H(G; F).

Hansen, Jakob, and Robert Ghrist. "Toward a spectral theory of cellular
sheaves." Journal of Applied and Computational Topology 3.4 (2019).



Cellular Sheaves

Graph Laplacian

We can recover the graph Laplacian L& in this sheaf-theoretic language.

Set F(v) = R for all vertices v € V' and choose restriction maps such that
J:IQ Fuge = Ay, for all edges e = (u,v).

F(v) F(u)

Choose sections / signals




Applications
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Applications

Knowledge Graph Embedding

A knowledge graph G is a typed graph composed of entities (vertices) and relations (edges).

Let § be a set of entity types and R a set of relations. Suppose that each » € ‘'R may hold
between an entity of type h(r) € S and an entity of type t(r) € S. The tuple Q = (S, R, b, 1)
is a knowledge schema which may be viewed as a directed multigraph.

We seek embeddings of &, instantiating ), which can be used for e.g. link prediction.

Let £ : G — Q be a graph morphism which instantiates G with typing.

Q Julia Sachin Anjya 0)

friends friends

@) > O > O L favorite film
favorite ﬁlml favorite ﬁlml favorite ﬁlml /-i <«
o O o L)

friends

Fargo Star Wars Primer



Applications

Knowledge Graph Embedding

Given a graph morphism £ : G — @ instantiating a knowledge graph G from a schema Q, a
knowledge sheaf embedding of G is a sheaf F on Q together with a 0-cochain x € C°(G; k* F).

G Julia friends Sachin friends Anjya Q

@) » O > O k favorite film
favorite ﬁlml favorite ﬁlml favorite ﬁlml 7 * @ <

friends

Fargo Star Wars Primer

e LELLLEY + +
simultaneously. \ o > O

5 g l @ — @

By x ccoG v r) @

B "
O ® ®
B H H —e—



Applications

Knowledge Graph Embedding

Many of the most popular knowledge graph embedding methods (TransE, SE,
RotatE) are implicitly learning sheaf representations.

These methods use contrastive learning to find entity and relation representations
which are as consistent as possible with respect to the typing schema.

The sheaf Laplacian allows one to solve boundary value problems on the knowledge graph
via harmonic extension, providing a method for reasoning over conjunctive queries.

Q—»O O-»Q-.O O_,Q_,O_,Q “What is Julia’s friend’s
friend’s favorite movie?”

S £ e e

Gebhart, Thomas, Jakob Hansen, and Paul Schrater. "Knowledge Sheaves: A Sheaf-Theoretic Framework for
Knowledge Graph Embedding." International Conference on Artificial Intelligence and Statistics. PMLR, 2023.



Applications

Sheaf Neural Networks

Can we learn representations of sheaf-valued sig-

nals to e.g. classify 0O-cells (vertices) of a cell g x — HO(G; F)
complex (graph)? We seek: ®

PN CYNG F) — CUGy F) l ﬁ
Transform by W® ' @ @ Diffuse by I,k — ]3]:

Let X € R™*4 be d, k-dimensional 0-cochains. / . \
X

+1) _ ((Ink LI, B)me(o)

A

(o) \

Ly: lized sheaf Laplaci \
7: normalized sheaf Laplacian. ! ® ‘a) g/@ @
B, W' learnable parameters. @ @

A sheaf convolutional network layer: ﬂ
[SON(X) = & ((Ink LA, ® B)Xw) ©) ﬁ
i x L layers

Repeated application of I,,, — L smoothes each co-chain with respect to the sheaf structure:
more expressive, non-flat representations are learnable.



Applications

Sheaf Neural Networks

GCN SCN
FEN L X(G,RY-1) — X(G,R™) PN CYG F) —» CU (G F)
FOEON(X) = ¢ ((I _ f}G)XW) FSON(X) = o ((Ink — Lp)I, B)XW)
X(t+1)=-LeX(t) X(t+1)=—-LrX(t)
e(x,A) = x" Lax E(x,F)=x'Lrx
= Y Auu(x—x,)? = Y 1FvaeDyPxy — FugeDy Vx|
(u,v)=e u,v e




Applications

Sheaf Neural Networks

SCNs learn representations of sheaf-valued signals, and can also be used to improve
expressivity of graph representations.

Bodnar et al. recently showed that by varying the subspace from which restriction maps
are chosen/learned, one can increase the separation power of sheaf diffusion.

SCNs learn on signed graphs

Tieat = 0.10

and can learn heterogeneous representations:

o2, = 0.30 02, = 0.50 o2, = 0.70 o2, = 0.90

Table 1: Results on node classification datasets sorted by their homophily level. Top three models are

3 0.8 E . . .
T F;:: ﬁ rr 7~ ' - coloured by First, Second, Third. Our models are marked NSD.
N3 0.6 T 1 1 1 TR
& J.’ - x J e
04 ' ' ' ' ' ' ' ' ' Texas Wisconsin Film Squirrel  Chameleon Cornell Citeseer Pubmed Cora
< 05 | | | | Hom level 0.11 0.21 0.22 0.22 0.23 0.30 0.74 0.80 0.81
o ’ :: 1 : #Nodes 183 251 7,600 5,201 2,277 183 3,327 18,717 2,708
N”,: 0.6 1 - ﬁ E ﬁ . : #Edges 295 466 26,752 198,493 31,421 280 4,676 44,327 5,278
L, , L. , ! , i . ' . #Classes 5 5 5 5 5 5 7 3 6
> Diag-NSD 85.67+6.95 88.63+2.75 37.79+101 54.78+1.81 68.68+1.73 86.49+7.35 77.14+1.85 89.42+0.43 87.14+1.06
3 £ 084 1 1 1 1 O(d)-NSD  85.95+5.51 89.41+474 37.81+115 56.34+132 68.04+158 84.86+4.71 76.70+1.57 89.49+0.40 86.90+1.13
T £ 06l i i ﬁ i z: _ } Gen-NSD 82.97+5.13 89.21+3814 37.80+1.22 53.17+1.31  67.93+158 85.68+6.51 76.32+1.65 89.33+0.35  87.30+1.15
S8 l).JJ. i J i J i J IT J‘ . GGCN 84.86+4.55 86.86+3.20 37.54+156 55.17+158 71.14+1814 85.68+6.63 77.14x1.45 89.15+0.37 87.95x1.05
H2GCN 84.86+7.23 87.65+4.98 35.70+1.00 36.48+1.86 60.11+2.15 82.70+5.28 77.11+1.57 89.49+038 87.87+1.20
NS 08 4 _ A _ _ GPRGNN 78.38+4.36  82.94+4.21  34.63+122 31.61+124 46.58+1.71  80.27+s8.11  77.13+1.67  87.54+0.38 87.95+1.18
‘O" ‘K: m m FAGCN 82.43+6.89 82.94+7.95 34.87+1.25 42.59+0.79  55.22+3.19  79.19+9.79 N/A N/A N/A
s 067 ﬁ ﬁ y ) ] MixHop T7.84+7.73  T75.88+4.90 32.22+234 43.80+1.48 60.50+2.53 73.51+6.34 76.26+1.33 85.31+0.61 87.61+0.85
© 0.4 J, § J, § Jv . £ . J' § GCNII 77.57+383 80.39+3.40 37.44+1.30 38.47+1.58 63.86+3.04 77.86+3.79 T77.33+1.48 90.15+0.43 88.37+1.25
Geom-GCN  66.76+2.72  64.51+3.66  31.59+1.15 38.15+0.92  60.00+2.81  60.54+3.67 78.02+1.15 89.95+0.47 85.35+1.57
S 0.8 4 J J J PairNorm 60.27+4.3¢  48.43+6.14  27.40+1.24 50.44+2.04 62.74+2.82 58.92+3.15 73.59+1.47 87.53+0.44 85.79+1.01
C‘f i GraphSAGE  82.43+6.14  81.18+5.56  34.23+0.99 41.61+0.74  58.73+1.68 75.95+5.01 76.04+1.30 88.45+0.50 86.90+1.04
SO 061 i i ﬁ: | GCN 55.14+5.16  51.76+3.06  27.32+1.10 53.43+2.01  64.82+2.24  60.54+530 76.50+1.36 88.42+0.50 86.98+1.27
0.4 J, . J, . L . 4 . 4 . GAT 52.16+6.63 49.41+4.09 27.44+089 40.72+1.55 60.26+2.50 61.89+5.05 76.55+1.23  87.30+1.10 86.33+0.48
0 500 0 500 0 500 0 500 0 500 MLP 80.81+4.75  85.29+3.31  36.53+0.70  28.77+1.56  46.21+2.99  81.89+6.40 T74.02+1.90 87.16+0.37  75.69+2.00

Epoch

—4— SheafNN-16

—— GCN-16

—¥— SheafNN-32

Hansen, Jakob, and Thomas Gebhart. "Sheaf neural networks." NeurlPS
2020 Workshop on Topological Data Analysis and Beyond (2020).

—»— GCN-32

Bodnar, Cristian, et al. "Neural sheaf diffusion: A topological perspective on heterophily and
oversmoothing in gnns." Advances in Neural Information Processing Systems 35 (2022).
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