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Introduction Why am I here?

Why am I here?

For about 15 years I’ve been interested in applying CT to sense-making.

Living things get a sense of the world; how is sense structured?

How are our senses constructed, at all levels (cells, bodies, orgs)?

E.g. imagine this structure as a database; comm’n = data migration.

But what about dynamics; how does data flow through systems?

Adjoint school: “Toward a mathematical foundation for Autopoiesis”

My group: Fong (TA) + Myers, Libkind, Gavranovic, Smithe.

Led to new insights on lenses, learners, categorical systems theory, etc.

Autopoiesis—how things create themselves—remains mysterious.

In what language could an accounting of autopoiesis be given?

What math would let you express systems whose structure adapts?

My goal is to construct such a mathematical language.

Today I’ll tell you about my progress so far.
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Introduction Unreasonable effectiveness

Unreasonable effectiveness

Wigner lauded math as unreasonably effective in the natural sciences.

Many of his assertions also affirm the effectiveness of CT in math.

He mentions the miracle that is our ability to make sense of the world.

Probably the real miracle here is abstraction, a bi-directional thing:

We can take a complex situation and boil it down to a simple one.

This first part can be imagined as a function f : A→ B.

Then we can take conclusions about the abstract f (a) : B and...

... transport them back to the specific situation a we started with.

I think Poly is similarly unreasonably effective for computer science.

The category Poly is strange but still pretty easy to think about.

In some sense it’s all about plumbing abstractions.
It’s got tons of structure: limits, colimits, three orthogonal factorization systems, infinitely many
monoidal closed structures, various coclosures, its comonoids are categories, its monoids generalize operads, etc.

But it also has tons of applications in CS: Moore machines and Mealy machines,
databases and data migration, algebraic datatypes, bi-directional transformations, dependent type theory, effects
handling, cellular automata, rewriting workflows, deep learning.
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Introduction Dynamic organizational systems

Dynamic organizational systems

One interesting thing Poly lets us do is to consider dynamic interactions.

Wiring diagrams are interactions, but they’re static, fixed.

p1

p2

p3

p4

p5

q

What if p1 outputs the phrase “I want to disconnect from p3”?

Perhaps the flowing signals could induce changes in wiring pattern.

In training ANNs, the flowing signals do induce changes in weights.

The Poly ecosystem has native data structures for this.

In particular, a monoidal double category called Org is well-suited.

But ANNs have a further property: coherence coming from the chain rule.

“The composite of gradient descenders is again a gradient descender.”

B. Shapiro and I call such things dynamic organizational systems.

Examples: ANNs, prediction markets, Hebbian learning, and others.
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Introduction Plan for the talk

Plan for the talk

During the remainder of the talk, I will:

Give an intuitive mathematical introduction to Poly,

Explain the monoidal double category Org,

Define dynamic operads and dynamic monoidal categories,

Give example of ANNs and prediction markets, and

Conclude with a summary.
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Introduction to Poly Definition and intuition

Definition and intuition

A polynomial p is essentially a data structure. Here are three viewpoints:

Algebraic Bundle Corolla forest

y2 + 3y + 2

•

•
•

•

•

•

•

•

•

• •
π • • • • • •

Cat. description: Poly = “sums of representable functors Set→ Set”.

For any set S , let yS := Set(S ,−), the functor represented by S .
Def: a polynomial is a sum p =

∑
i :I y

Pi of representable functors.
Def: a morphism of polynomials is a natural transformation.
Note that I = p(1); this is a convenient fact. Write p[i ] for Pi .
(We can use many other categories in place of Set, but let’s not.)

Other ways to see a polynomial p =
∑

i :I y
p[i ] as an interface:

A set I of types; each type i : I has a set p[i ] of terms.

A set I of problems; each problem i : I has a set p[i ] of solutions.

A set I of body positions; each pos’n i : I has a set p[i ] of sensations.
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Introduction to Poly Definition and intuition

Combinatorics of polynomial morphisms

Let p := y3 + 2y and q := y4 + y2 + 2

•
1
•
2
•
3

p

•
1
•
2
•
3
•
4

q

A morphism p
ϕ−→ q delegates each p-position to a q-position, passing

back directions:

•
1

•
1

•
2

•
1

•
3

•
4

Notation (ϕ1, ϕ
]) :
∏

I :p(1)

∑
J:q(1)

∏
j :q[J]

∑
i :p[I ] 1
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Introduction to Poly Definition and intuition

Operations: +,×,⊗, /, [−,−],
[ −
−
]

Given two interfaces p, q, there are many ways to get another interface.

For each we’ll say the problems and solutions for resulting interface.

Sum p + q: problem is i : p(1) or j : q(1); solve it.

Product p × q: problem is pair (i , j) : p(1)× q(1); solve either.

Dirichlet product p ⊗ q: prob’m is pair (i , j) : p(1)× q(1); solve both.

Substitution product p / q: prob’m is choice of i : p(1) and...

...for every solution a problem j : q(1); solve first then second.

Internal hom [p, q]: problem is polynomial map ϕ : p → q;...

...soln: problem i : p(1) and solution to its image ϕ1(i) : q(1).

The last one is “Left Kan extension”; slide 9.

Letting p :=
∑

i :p(1) y
pi and q :=

∑
j :q(1) y

qj

p × q =
∑
(i ,j)

yp[i ]+q[j] p ⊗ q =
∑
(i ,j)

yp[i ]×q[j]

p / q =
∑
i :p(1)

∑
j : p[i ]→q(1)

y
∑

x :p[i ] q[jx] [p, q] =
∑

ϕ : p→q

y
∑

i :p(1) q[ϕ1i ]
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Introduction to Poly Definition and intuition

Comonoids are categories

Poly has a lot of amazing surprises, as we’ll see. One coming soon.

The substitution product p / q means plug q into p.

So y2 / (y + 1) ∼= y2 + 2y + 1. Not symmetric! (y + 1) / y2 = y2 + 1.

But it’s a monoidal structure. The unit is y because y / p = p = p /y.

In any mon’l cat’y, it’s interesting to consider the monoids and comonoids.

In the case of (Poly, y, /), the comonoids are exactly categories!

If C is a category, for any c : Ob(C) define C[c] :=
∑

c ′:Ob(C)

C(c , c ′).

Then the associated polynomial is pC :=
∑

c:Ob(C) y
C[c].

Identities, codomains, and compositions are given by coherent maps

ε : pc → y and δ : pc → pc / pc

All that to say that comonoids in Poly are exactly categories!

Maps between comonoids are not functors; they’re “cofunctors”.

Denote the category of categories and cofunctors by Cat].

8 / 27
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If C is a category, for any c : Ob(C) define C[c] :=
∑

c ′:Ob(C)

C(c , c ′).

Then the associated polynomial is pC :=
∑

c:Ob(C) y
C[c].

Identities, codomains, and compositions are given by coherent maps

ε : pc → y and δ : pc → pc / pc

All that to say that comonoids in Poly are exactly categories!

Maps between comonoids are not functors; they’re “cofunctors”.

Denote the category of categories and cofunctors by Cat].
8 / 27



Introduction to Poly Lenses, Moore machines, and Mealy machines

Lenses, Moore machines, and Mealy machines

For any p, q as above, we have
[
q
p

]
=
∑

i :p(1) y
q(p[i ]). Left Kan extension.

In particular, we can regard A,B : Set as constant polynomials.

Then
[
A
B

]
= ByA. Maps between these are “lenses”.

A map
[
A
B

]
→
[
A′

B′

]
is a natural transf’n ByA → B ′yA

′
. It consists of

get : B → B ′

put : B × A′ → A

These come up in functional programming.

Why will this be useful to us?

A map
[
S
S

]
→
[
A
B

]
is a Moore machine. It consists of:

State set S , a readout f rdt : S → B, and dynamics f dyn : S × A→ S .

Given some initial s0 : S and an input list a0, . . . , an, let...

...bi := f rdt(si ) and si+1 := f dyn(si , ai ). Get output list b0, . . . , bn.

A map
[
S
S

]
→ [Ay,By] is a Mealy machine.

It consists of state set S and a function S × A→ S × B.

Again, it can transform a list of inputs into a list of outputs.
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Introduction to Poly Lenses, Moore machines, and Mealy machines

Depicting Moore machine interfaces

Here’s how we depict interfaces (A,B) for Moore machines:

A B

If, e.g. A = A1 × A2 and B = B1 × B2 × B3, we will instead draw:

A1

A2

B1
B2
B3

In Poly these two interfaces are denoted ByA and B1B2B3y
A1A2 .
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Introduction to Poly Lenses, Moore machines, and Mealy machines

Wiring diagrams

Here’s a picture of a wiring diagram:

Plant

Controller

A

B

C

C

System

It includes three interfaces: Controller, Plant, and System.

Controller = ByC Plant = CyAB System = CyA

The wiring diagram represents a lens, ϕ : Controller⊗ Plant→ System.

ϕ : ByC ⊗ CyAB −→ CyA
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Introduction to Poly Lenses, Moore machines, and Mealy machines

Moore machines and wiring diagrams as lenses

Plant

Controller

A

B

C

System

To summarize what we’ve said so far:

A wiring diagram (WD) is a lens, e.g. ByC ⊗ CyAB −→ CyA.

Each Moore machine is a lens, e.g. SyS → ByC and TyT → CyAB .

We can tensor the Moore machines and compose to obtain STyST → CyA.

So a wiring diagram is a formula for combining Moore machines.

The whole story is lenses (monomials), through and through.

For “mode dependence” where interfaces can change, use gen’l polys.
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Introduction to Poly Category theory in Computer Science

Category theory in Computer Science

Category theory has been useful in computer science.

Simply-typed lambda calculus as base for functional programming.

E.g. in Haskell, types are objects, programs are morphisms.

STLC a cartesian closed category: tupling and function types.

Side effects are handled by monads.

Poly can add a lot to this story.

First, note that it’s already involved in many ways.
Algebraic data types are free monads on polynomial functors.

Initial algebras and final coalgebras for poly’s are very common.

Lenses are maps between monomials.
But we will see that Poly goes far beyond functional programming.
We’ve seen it’s relevant for state (Moore/Mealy) machines. Also:

Databases and data migration,

Dependent type theory,

Effects handling,

Rewriting workflows,

Deep learning

Next up: laundry list of polynomials in action: unreasonable effectiveness.
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Introduction to Poly Functional programming

Functional programming

In functional languages such as Haskell, you often see things like this:

data Foo y = Bar y y y | Baz y y | Qux | Quux

data Maybe y = Just y | Nothing

These are polynomials: y3 + y2 + 2 and y + 1 respectively.

They’re “polymorphic” in that

they act on any Haskell type Y in place of the variable y, and

for any map f : Y1 -> Y2 there’s a map Foo Y1 -> Foo Y2

Another thing you see in Haskell is something like this:

List a = Nil | Cons a (List a)

What is going on here?

This the algebraic data type corresponding to pA := 1 + Ay.

Every polynomial has an initial algebra and final coalgebra.

The initial algebra of pA is carried by
∑

n:N An, classic lists.

The terminal coalgebra of pA is carried by AN +
∑

n:N An, streams.
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Introduction to Poly Databases and data migration

Databases and data migration

Databases are used throughout computer science.

A database consists of a schema, the things and how they relate,...

...and data, which are examples of the things and their relationships.

A useful CT story for this: schema = category, data = functor to Set.

Data migration means moving data from one schema to another.

The most useful: disjoint unions of conjunctive (duc-) queries.

All of this has a beautiful story in terms of polynomial functors.

Indeed, schema = category C = polynomial comonad (c , ε, δ).

And data = functor C → Set = c-coalgebra.

Data migrations from C to D are exactly (c , d)-bicomodules.

Often databases are considered ugly, but the math here is cat’ly very clean.
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Introduction to Poly Dependent type theory

Dependent type theory

Dependent types are what proof assistants like Coq&Lean are based on.

Idea: a type can depend on values of another type.

Eg: a category consists of a type O of objects and then...

...for every o1, o2 : O, a type M(o1, o2) of morphisms and then...

...identities, compositions, rules, all depending on the previous stuff.

Following Awodey, there’s a tight connection between poly’s and DTT.

You can model dependent type theory as...

...a cartesian polynomial monad (m, η, µ) and a pseudo-algebra for it.

Idea: recall our conception of m as “types and terms”.

A type in m /m is: a type in m and for every term, a type in m.

The multiplication map µ : m /m→ m realizes every such...

...compound type as a type in m. This tells you how to interpret Σ.

You can interpret Π-types using a m-pseudoalgebra.

The type-forming and term-forming rules of DTT arise as the axioms.

So the high-level language of proof assistants has semantics in Poly.
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The monoidal double category Org of dynamic organizations

Outline

1 Introduction

2 Introduction to Poly

3 The monoidal double category Org of dynamic organizations
Categories where the morphisms are changing
Recalling the internal hom for Poly
The monoidal double category Org
ANNs in terms of Org
Prediction markets in terms of Org
Dynamic organizational systems

4 Conclusion
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The monoidal double category Org of dynamic organizations Categories where the morphisms are changing

Categories where the morphisms are changing

Imagine something like Set, except that morphisms are dynamic.

For sets A,B, a morphism f : A→ B is a machine with states S .

In its current state s : S , it outputs an actual function fs : A→ B.

Given an input a : A, it not only tells you fs(a) but updates its state.

I want to call refer to a morphism f as a dynamic function.

Dynamic morphisms of the above sort have a simple Poly-description.

As we said, the internal hom [Ay,By] : Poly is given by AByB .

A [Ay,By]-coalgebra is a Mealy machine S × A→ S × B.

This is a machine with the description above, a dynamic function.

We can generalize this by replacing Ay and By by arbitrary polynomials.

The resulting formalism is a setting for ANNs and prediction markets.
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The monoidal double category Org of dynamic organizations Recalling the internal hom for Poly

Recalling the internal hom for Poly

The ⊗-product is closed

Poly(p′ ⊗ p, q) ∼= Poly(p′, [p, q])

This closure turns out to be surprisingly relevant in applic’ns. It’s given by

[p, q] ∼=
∑

ϕ : p→q

y
∑

I :p(1) q[ϕ1I ]

Its set of positions is Poly(p, q), the set of usual poly maps p → q.

Makes more sense with [p1 ⊗ · · · ⊗ pk , q].

Positions here are interaction patterns (generalized WDs) of p′s in q.

A state machine SyS → [p1 ⊗ · · · ⊗ pk , q] outputs interaction patt’ns.

It inputs “the data flowing along the wires” from moment to moment.

This is the basis for machines that adapt / rewire themselves.

They have some structure now (the current interaction pattern).

They can reconfigure it based on what flows through them.
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The monoidal double category Org of dynamic organizations The monoidal double category Org

Preparing to define Org

We’re about ready to define Org. We just need some basic facts.

In any monoidal closed category (notation from Poly), one has maps

y→ [p, p] [p, q]⊗ [q, r ]→ [p, r ]

[p, q]⊗ [p′, q′]→ [p ⊗ p′, q ⊗ q′]

The functor Poly→ Cat given by p 7→ p-Coalg is lax monoidal

1→ y-Coalg p-Coalg × q-Coalg→ (p ⊗ q)-Coalg
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The monoidal double category Org of dynamic organizations The monoidal double category Org

Intuition on [p, q]-Coalg

For p : Poly, a p-coalgebra is a pair (S , α) where S : Set and α : S → p(S).

Equivalently it is also a map
[
S
S

]
→ p.

If p = ByA then a p-coalgebra is an (A,B)-Moore machine.

If q = [Ay,By] then a q-coalgebra is an (A,B)-Mealy machine.

For each s : S , we obtain a position α1(s) : p(1) of p and...

... for every direction of i : p[α1(s)], we get a new state α](s, i) : S .

A morphism of p-coalgebras is a map f : S → T with the relevant equation

It ensures that for any s : S , the behaviors of s and f (s) are identical.

Behaviorally, a map S → T says that any S behavior is a T -behavior.

How do we think of [p, q]-Coalg? An object consists of

a set S : Set of “states” (or think “parameters”).

For each s : S we get a Poly map ϕs : p → q and ...

... for each pair (I : p(1), j : q[ϕs I ]), we get a new state in S .

More intuition on the next slide.
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How do we think of [p, q]-Coalg? An object consists of

a set S : Set of “states” (or think “parameters”).

For each s : S we get a Poly map ϕs : p → q and ...

... for each pair (I : p(1), j : q[ϕs I ]), we get a new state in S .

More intuition on the next slide.
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Definition of Org

We can now define the bicategory Org.

Ob(Org) := Ob(Poly), objects are polynomials.

Org(p, q) := [p, q]-Coalg.

Example: suppose p = ByC ⊗ CyAB and q = CyA.

Then for any state s : S of a [p, q]-coalgebra (S , f ), we have...

first of all, a map p → q. For example, we may have this one:

Plant

Controller

A

B

C

C

System

That is, we’re outputting interaction patterns.

An input (to get a new state) is “everything flowing on the wires”.

That is, a tuple (a, b, c) : A× B × C . This data updates the state.

So (S , f ) outputs interaction patterns and listens to what flows.
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ANNs in terms of Org

We can now describe artificial neural networks in this language.

Let t :=
∑

x∈R yT
∗
x R ∼= RyR.

So “positions of t” = points in R and “directions” = gradients.

Note that t ⊗ t ∼=
∑

x∈R2 yT
∗
x R2 ∼= R2yR

2
and similarly for any t⊗n.

A [t⊗m, t⊗n]-coalgebra consists of:

A set S of states / parameters, and for each s : S ...

... a function fs : Rm → Rn and ...

... a function (x : Rm)× (y ′ : T ∗fs(x)R
n)→ S × T ∗s Rm.

This latter thing might be called “update and backprop”.

It takes an input x : Rm and a gradient y ′ : T ∗f (s)R
n and returns...

...a new/updated state s ′ : S and a backprop’d gradient x ′ : T ∗s Rm.

There are many such [t⊗m, t⊗n]-coalgebras.

One has carrier S := {P : N, f : P × Rm → Rn differentiable, p : P}.
The state (P, f , p) updated by training pair (x : Rm, y ′ : T ∗f (p,x)R

n)

... is (P, f , p′) where p′ := p + πP
(
Df >(p,x) · y

′)
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Model of prediction markets

Let’s consider a simple version of a prediction market. Suppose:

There is a fixed finite set X of outcomes.

Each participant can output a prediction P : ∆+(X ) where

∆+(X ) :=

{
P : X → (0, 1]

∣∣∣∣∣ 1 =
∑
x∈X

P(x)

}
Each participant then receives the result, an element x : X .

It’s compositional if we assign predictors a relative “trust” / “wealth”.

Let n be a finite set of predictors. A relative trust is t : ∆(n).

Given n : N, t, and predictors P1, . . . ,Pn : ∆+(X ), ...

...we get a new predictor t · P = t(1) ∗ P1 + · · ·+ t(n) ∗ Pn.

I.e., we multiply each prediction by how much we trust its predictor.
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Prediction markets in terms of Org

Fix X : Fin. We use the polynomial p := ∆+(X )yX to model a predictor.

It outputs a prediction P : ∆+(X ) and inputs an actual outcome x : X .

Then p⊗n outputs n predictions and receives n outcomes.

Consider the polynomial [p⊗n, p]. A position includes:...

...a function ∆+(X )n → ∆+(X ), and a function X → X n. ...

It’s a way to combine n predictions into one and distribute outcomes.

A direction of [p⊗n, p] consists of: n-many pred’ns and one outcome.

The category of maps p⊗n → p in Org is [p⊗n, p]-Coalg.

Such a coalgebra consists of a set Tn and for each t : Tn,...

...a function ∆+(X )n → ∆+(X ), a function X → X n, and...

...given n predictions P1, . . . ,Pn and an outcome x , a new state.

There are many such coalgebras. The one for us is:

Take Tn := ∆n, the set of “relative trust levels” for n players.

Given t : Tn, use t · − : ∆+(X )n → ∆+(X ) and x 7→ (x , x , . . . , x).

Given pred’ns (Pi )i :n and outcome x , use Bayesian upd. to get new t ′.
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What ANNs and prediction markets have in common

We’ll now abstract a common feature of ANNs and prediction markets.

In both ANNs and prediction markets, we have a certain polynomial:

For ANNs it’s t :=
∑

x :R yT
∗
x R and for PMs it’s p := ∆+(X )yX .

In both we look at certain internal homs, and their coalgebras:

For ANNs it’s [t⊗m, t⊗n]-Coalg and for PMs it’s [p⊗n, p]-Coalg.

How do we think of these coalgebras in terms of state machines?

In ANNs, the states are parameters; in PMs they are trust levels.

An ANN uses params to output a function f : Rm → Rn.

A PM uses trusts to output a function ∆+(X )n → ∆+(X ).

The ANN updates by grad. descent and the PM updates using Bayes.

ANNs and PMs have one more thing is in common: compositionality.

For both ANNs and PMs, the same formula holds regardless of m, n.

In particular, both are stable under composition.

We can make this more formal with a simple definition.
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Dynamic organizational systems: enrichment in Org

A dynamic categorical structure is a categorical structure enriched in Org.

A dynamic operad is an operad enriched in Org.

A dynamic monoidal category is a monoidal category enriched in Org.

All these are defined in a paper with BT Shapiro (arXiv:2205.03906).

PMs form a dynamic operad, ANNs form a dynamic monoidal cat’y.

What does it mean?

It’s a categorical structure where the morphisms are dynamic.

As the morphisms are “used” they change/adapt/update.

The morphisms in ANNs are parameterized by weights that change.

The morphisms in PMs are parameterized by wealths that change.

Finally, these dynamics are stable under series and parallel composition.

For ANNs composition is a map

[t⊗m, t⊗n]-Coalg × [t⊗n, t⊗o ]-Coalg→ [t⊗m, t⊗o ]-Coalg

This is a categorical expression of the chain rule.

26 / 27
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Conclusion Summary

Summary

Poly has tons of ready-made structure for CS.

It is the most structured category I’ve seen, and full of surprises.

Org is very simple: Ob = Ob(Poly) and Hom(p, q) = [p, q]-Coalg.

A dynamic category is a category enriched in Org.

It’s got ordinary objects but its morphisms are dynamic: ...

... They change based on what flows through them.

Dynamic operads, etc. are defined similarly.

There are several examples of dynamic categorical systems.

Today we discussed ANNs and prediction markets.

There’s also a model of Hebbian learning as dynamic monoidal cat’y.

If you find another dynamic categorical system, please let me know!

Open question: dynamic org’l system for autopoiesis / sense-making?

Thanks! Comments and questions welcome...
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