Dynamic organizational systems:
 From deep learning to prediction markets

David I. Spivak

TOPOS
 I NSTITUTE

Categories for Al
2023 March 23

Outline

1 Introduction

■ Why am I here?

- Unreasonable effectiveness
- Dynamic organizational systems

■ Plan for the talk

2 Introduction to Poly

3 The monoidal double category $\mathbb{O} r g$ of dynamic organizations

4 Conclusion

Why am I here?

For about 15 years I've been interested in applying CT to sense-making.
■ Living things get a sense of the world; how is sense structured?
■ How are our senses constructed, at all levels (cells, bodies, orgs)?
■ E.g. imagine this structure as a database; comm'n = data migration.

- But what about dynamics; how does data flow through systems?

Why am I here?

For about 15 years I've been interested in applying CT to sense-making.
■ Living things get a sense of the world; how is sense structured?
■ How are our senses constructed, at all levels (cells, bodies, orgs)?
■ E.g. imagine this structure as a database; comm'n = data migration.

- But what about dynamics; how does data flow through systems?

Adjoint school: "Toward a mathematical foundation for Autopoiesis"
■ My group: Fong (TA) + Myers, Libkind, Gavranovic, Smithe.

- Led to new insights on lenses, learners, categorical systems theory, etc.

■ Autopoiesis—how things create themselves-remains mysterious.

Why am I here?

For about 15 years I've been interested in applying CT to sense-making.
■ Living things get a sense of the world; how is sense structured?
■ How are our senses constructed, at all levels (cells, bodies, orgs)?
■ E.g. imagine this structure as a database; comm'n = data migration.
■ But what about dynamics; how does data flow through systems?
Adjoint school: "Toward a mathematical foundation for Autopoiesis"
■ My group: Fong (TA) + Myers, Libkind, Gavranovic, Smithe.

- Led to new insights on lenses, learners, categorical systems theory, etc.

■ Autopoiesis—how things create themselves-remains mysterious.
In what language could an accounting of autopoiesis be given?
■ What math would let you express systems whose structure adapts?

- My goal is to construct such a mathematical language.

■ Today I'll tell you about my progress so far.

Unreasonable effectiveness

Wigner lauded math as unreasonably effective in the natural sciences.
■ Many of his assertions also affirm the effectiveness of CT in math.
■ He mentions the miracle that is our ability to make sense of the world.

Unreasonable effectiveness

Wigner lauded math as unreasonably effective in the natural sciences.
■ Many of his assertions also affirm the effectiveness of CT in math.
■ He mentions the miracle that is our ability to make sense of the world.
Probably the real miracle here is abstraction, a bi-directional thing:
■ We can take a complex situation and boil it down to a simple one.
■ This first part can be imagined as a function $f: A \rightarrow B$.
■ Then we can take conclusions about the abstract $f(a): B$ and...
■ ... transport them back to the specific situation a we started with.

Unreasonable effectiveness

Wigner lauded math as unreasonably effective in the natural sciences.
■ Many of his assertions also affirm the effectiveness of CT in math.
■ He mentions the miracle that is our ability to make sense of the world.
Probably the real miracle here is abstraction, a bi-directional thing:
■ We can take a complex situation and boil it down to a simple one.
■ This first part can be imagined as a function $f: A \rightarrow B$.

- Then we can take conclusions about the abstract $f(a): B$ and...

■ ... transport them back to the specific situation a we started with.
I think Poly is similarly unreasonably effective for computer science.
■ The category Poly is strange but still pretty easy to think about.
■ In some sense it's all about plumbing abstractions.

- It's got tons of structure: limits, colimits, three orthogonal factorization systems, infinitely many monoidal closed structures, various coclosures, its comonoids are categories, its monoids generalize operads, etc.
- But it also has tons of applications in CS: Moore machines and Mealy machines, databases and data migration, algebraic datatypes, bi-directional transformations, dependent type theory, effects handling, cellular automata, rewriting workflows, deep learning.

Dynamic organizational systems

One interesting thing Poly lets us do is to consider dynamic interactions.

- Wiring diagrams are interactions, but they're static, fixed.

■ What if p_{1} outputs the phrase "I want to disconnect from p_{3} " ?
■ Perhaps the flowing signals could induce changes in wiring pattern.

- In training ANNs, the flowing signals do induce changes in weights.

■ The Poly ecosystem has native data structures for this.
■ In particular, a monoidal double category called $\mathbb{O} \mathbf{r g}$ is well-suited.

Dynamic organizational systems

One interesting thing Poly lets us do is to consider dynamic interactions.
■ Wiring diagrams are interactions, but they're static, fixed.

■ What if p_{1} outputs the phrase "I want to disconnect from p_{3} " ?
■ Perhaps the flowing signals could induce changes in wiring pattern.

- In training ANNs, the flowing signals do induce changes in weights.
- The Poly ecosystem has native data structures for this.

■ In particular, a monoidal double category called $\mathbb{O} \mathbf{r g}$ is well-suited.
But ANNs have a further property: coherence coming from the chain rule.
■ "The composite of gradient descenders is again a gradient descender."
■ B. Shapiro and I call such things dynamic organizational systems.
■ Examples: ANNs, prediction markets, Hebbian learning, and others.

Plan for the talk

During the remainder of the talk, I will:
■ Give an intuitive mathematical introduction to Poly,
■ Explain the monoidal double category $\mathbb{O} \mathbf{r g}$,
■ Define dynamic operads and dynamic monoidal categories,
■ Give example of ANNs and prediction markets, and

- Conclude with a summary.

Outline

1 Introduction

2 Introduction to Poly
■ Definition and intuition
■ Lenses, Moore machines, and Mealy machines
■ Category theory in Computer Science

- Functional programming
- Databases and data migration

■ Dependent type theory

3 The monoidal double category $\mathbb{O} r g$ of dynamic organizations

4 Conclusion

Definition and intuition

A polynomial p is essentially a data structure. Here are three viewpoints:

Corolla forest

Definition and intuition

A polynomial p is essentially a data structure. Here are three viewpoints:

Corolla forest

Cat. description: Poly $=$ "sums of representable functors Set \rightarrow Set".
$■$ For any set S, let $y^{S}:=\operatorname{Set}(S,-)$, the functor represented by S.
■ Def: a polynomial is a sum $p=\sum_{i: l} y^{P_{i}}$ of representable functors.
■ Def: a morphism of polynomials is a natural transformation.
\square Note that $I=p(1)$; this is a convenient fact. Write $p[i]$ for P_{i}.
■ (We can use many other categories in place of Set, but let's not.)

Definition and intuition

A polynomial p is essentially a data structure. Here are three viewpoints:

Corolla forest

Cat. description: Poly $=$ "sums of representable functors Set \rightarrow Set".
■ For any set S, let $y^{S}:=\mathbf{S e t}(S,-)$, the functor represented by S.

- Def: a polynomial is a sum $p=\sum_{i: I} y^{P_{i}}$ of representable functors.

■ Def: a morphism of polynomials is a natural transformation.
\square Note that $I=p(1)$; this is a convenient fact. Write $p[i]$ for P_{i}.
■ (We can use many other categories in place of Set, but let's not.)
Other ways to see a polynomial $p=\sum_{i: 1} y^{p[i]}$ as an interface:
■ A set I of types; each type $i: I$ has a set $p[i]$ of terms.

- A set I of problems; each problem $i: I$ has a set $p[i]$ of solutions.

■ A set I of body positions; each pos'n $i: /$ has a set $p[i]$ of sensations.

Combinatorics of polynomial morphisms

Let $p:=y^{3}+2 y$ and $q:=y^{4}+y^{2}+2$

Combinatorics of polynomial morphisms

Let $p:=y^{3}+2 y$ and $q:=y^{4}+y^{2}+2$

A morphism $p \xrightarrow{\varphi} q$ delegates each p-position to a q-position, passing back directions:

Combinatorics of polynomial morphisms

Let $p:=y^{3}+2 y$ and $q:=y^{4}+y^{2}+2$

A morphism $p \xrightarrow{\varphi} q$ delegates each p-position to a q-position, passing back directions:

Notation $\left(\varphi_{1}, \varphi^{\sharp}\right): \prod_{I: p(1)} \sum_{J: q(1)} \prod_{j: q[J]} \sum_{i: p[/]} 1$

Operations: $+, \times, \otimes, \triangleleft,[-,-],\left[\begin{array}{l}- \\ -\end{array}\right.$

Given two interfaces p, q, there are many ways to get another interface.
■ For each we'll say the problems and solutions for resulting interface.
■ Sum $p+q$: problem is $i: p(1)$ or $j: q(1)$; solve it.

Operations: $+, \times, \otimes, \triangleleft,[-,-],\left[\begin{array}{l}- \\ -\end{array}\right.$

Given two interfaces p, q, there are many ways to get another interface.
■ For each we'll say the problems and solutions for resulting interface.
■ Sum $p+q$: problem is $i: p(1)$ or $j: q(1)$; solve it.
■ Product $p \times q$: problem is pair $(i, j): p(1) \times q(1)$; solve either.

Operations: $+, \times, \otimes, \triangleleft,[-,-],\left[\begin{array}{l}- \\ -\end{array}\right]$

Given two interfaces p, q, there are many ways to get another interface.
■ For each we'll say the problems and solutions for resulting interface.
■ Sum $p+q$: problem is $i: p(1)$ or $j: q(1)$; solve it.
■ Product $p \times q$: problem is pair $(i, j): p(1) \times q(1)$; solve either.
■ Dirichlet product $p \otimes q$: prob'm is pair $(i, j): p(1) \times q(1)$; solve both.

Operations: $+, \times, \otimes, \triangleleft,[-,-],\left[\begin{array}{l}- \\ -\end{array}\right.$

Given two interfaces p, q, there are many ways to get another interface.
■ For each we'll say the problems and solutions for resulting interface.
■ Sum $p+q$: problem is $i: p(1)$ or $j: q(1)$; solve it.
■ Product $p \times q$: problem is pair $(i, j): p(1) \times q(1)$; solve either.
■ Dirichlet product $p \otimes q$: prob'm is pair $(i, j): p(1) \times q(1)$; solve both.
■ Substitution product $p \triangleleft q$: prob'm is choice of $i: p(1)$ and...
■ ...for every solution a problem $j: q(1)$; solve first then second.

Operations: $+, \times, \otimes, \triangleleft,[-,-],\left[\begin{array}{l}- \\ -\end{array}\right]$

Given two interfaces p, q, there are many ways to get another interface.
■ For each we'll say the problems and solutions for resulting interface.
■ Sum $p+q$: problem is $i: p(1)$ or $j: q(1)$; solve it.
■ Product $p \times q$: problem is pair $(i, j): p(1) \times q(1)$; solve either.
■ Dirichlet product $p \otimes q$: prob'm is pair $(i, j): p(1) \times q(1)$; solve both.
■ Substitution product $p \triangleleft q$: prob'm is choice of $i: p(1)$ and...
■ ...for every solution a problem $j: q(1)$; solve first then second.
■ Internal hom $[p, q]$: problem is polynomial map $\varphi: p \rightarrow q ; \ldots$
■ ...soln: problem $i: p(1)$ and solution to its image $\varphi_{1}(i): q(1)$.

Operations: $+, \times, \otimes, \triangleleft,[-,-],\left[\begin{array}{l}- \\ -\end{array}\right]$

Given two interfaces p, q, there are many ways to get another interface.
■ For each we'll say the problems and solutions for resulting interface.
■ Sum $p+q$: problem is $i: p(1)$ or $j: q(1)$; solve it.
\square Product $p \times q$: problem is pair $(i, j): p(1) \times q(1)$; solve either.
■ Dirichlet product $p \otimes q$: prob'm is pair $(i, j): p(1) \times q(1)$; solve both.
■ Substitution product $p \triangleleft q$: prob'm is choice of $i: p(1)$ and...
\square...for every solution a problem $j: q(1)$; solve first then second.
■ Internal hom $[p, q]$: problem is polynomial $\operatorname{map} \varphi: p \rightarrow q ; \ldots$
■ ...soln: problem $i: p(1)$ and solution to its image $\varphi_{1}(i): q(1)$.
■ The last one is "Left Kan extension"; slide 9.

Operations: $+, \times, \otimes, \triangleleft,[-,-],\left[\begin{array}{l}- \\ -\end{array}\right]$

Given two interfaces p, q, there are many ways to get another interface.
■ For each we'll say the problems and solutions for resulting interface.
■ Sum $p+q$: problem is $i: p(1)$ or $j: q(1)$; solve it.
\square Product $p \times q$: problem is pair $(i, j): p(1) \times q(1)$; solve either.

- Dirichlet product $p \otimes q$: prob'm is pair $(i, j): p(1) \times q(1)$; solve both.

■ Substitution product $p \triangleleft q$: prob'm is choice of $i: p(1)$ and...
■ ...for every solution a problem $j: q(1)$; solve first then second.
■ Internal hom $[p, q]$: problem is polynomial $\operatorname{map} \varphi: p \rightarrow q ; \ldots$
■ ...soln: problem $i: p(1)$ and solution to its image $\varphi_{1}(i): q(1)$.
■ The last one is "Left Kan extension"; slide 9.
Letting $p:=\sum_{i: p(1)} y^{p_{i}}$ and $q:=\sum_{j: q(1)} y^{q_{j}}$

$$
\begin{gathered}
p \times q=\sum_{(i, j)} y^{p[i]+q[j]} \quad p \otimes q=\sum_{(i, j)} y^{p[i] \times q[j]} \\
p \triangleleft q=\sum_{i: p(1)} \sum_{j: p[i] \rightarrow q(1)} y^{\sum_{x: p[i]} q[i x]} \quad[p, q]=\sum_{\varphi: p \rightarrow q} y^{\sum_{i: p(1)} q\left[\varphi_{1} i\right]}
\end{gathered}
$$

Comonoids are categories

Poly has a lot of amazing surprises, as we'll see. One coming soon.

- The substitution product $p \triangleleft q$ means plug q into p.
$■$ So $y^{2} \triangleleft(y+1) \cong y^{2}+2 y+1$. Not symmetric! $(y+1) \triangleleft y^{2}=y^{2}+1$.
■ But it's a monoidal structure. The unit is y because $y \triangleleft p=p=p \triangleleft y$.

Comonoids are categories

Poly has a lot of amazing surprises, as we'll see. One coming soon.

- The substitution product $p \triangleleft q$ means plug q into p.
$■$ So $y^{2} \triangleleft(y+1) \cong y^{2}+2 y+1$. Not symmetric! $(y+1) \triangleleft y^{2}=y^{2}+1$.
■ But it's a monoidal structure. The unit is y because $y \triangleleft p=p=p \triangleleft y$. In any mon'l cat'y, it's interesting to consider the monoids and comonoids.

■ In the case of (Poly, $y, \triangleleft)$, the comonoids are exactly categories!
$■$ If \mathcal{C} is a category, for any $c: \operatorname{Ob}(C)$ define $C[c]:=\sum_{c^{\prime}: \mathrm{Ob}(C)} C\left(c, c^{\prime}\right)$.

Comonoids are categories

Poly has a lot of amazing surprises, as we'll see. One coming soon.

- The substitution product $p \triangleleft q$ means plug q into p.
$■$ So $y^{2} \triangleleft(y+1) \cong y^{2}+2 y+1$. Not symmetric! $(y+1) \triangleleft y^{2}=y^{2}+1$.
■ But it's a monoidal structure. The unit is y because $y \triangleleft p=p=p \triangleleft y$. In any mon'l cat'y, it's interesting to consider the monoids and comonoids.
$■$ In the case of (Poly, $y, \triangleleft)$, the comonoids are exactly categories!
\square If \mathcal{C} is a category, for any $c: \mathrm{Ob}(C)$ define $C[c]:=\sum_{c^{\prime}: \mathrm{Ob}(C)} C\left(c, c^{\prime}\right)$.
- Then the associated polynomial is $p_{C}:=\sum_{c: \mathrm{Ob}(e)} y^{e[c]}$.

■ Identities, codomains, and compositions are given by coherent maps

$$
\epsilon: p_{c} \rightarrow y \quad \text { and } \quad \delta: p_{c} \rightarrow p_{c} \triangleleft p_{c}
$$

Comonoids are categories

Poly has a lot of amazing surprises, as we'll see. One coming soon.

- The substitution product $p \triangleleft q$ means plug q into p.
$■$ So $y^{2} \triangleleft(y+1) \cong y^{2}+2 y+1$. Not symmetric! $(y+1) \triangleleft y^{2}=y^{2}+1$.
$■$ But it's a monoidal structure. The unit is y because $y \triangleleft p=p=p \triangleleft y$. In any mon'l cat'y, it's interesting to consider the monoids and comonoids.

■ In the case of (Poly, $y, \triangleleft)$, the comonoids are exactly categories!
\square If C is a category, for any $c: \operatorname{Ob}(C)$ define $C[c]:=\sum_{c^{\prime}: \mathrm{Ob}(C)} C\left(c, c^{\prime}\right)$.

- Then the associated polynomial is $p_{C}:=\sum_{c: \mathrm{Ob}(e)} y^{e[c]}$.

■ Identities, codomains, and compositions are given by coherent maps

$$
\epsilon: p_{c} \rightarrow y \quad \text { and } \quad \delta: p_{c} \rightarrow p_{c} \triangleleft p_{c}
$$

All that to say that comonoids in Poly are exactly categories!
■ Maps between comonoids are not functors; they're "cofunctors".
■ Denote the category of categories and cofunctors by Cat ${ }^{\sharp}$.

Lenses, Moore machines, and Mealy machines

For any p, q as above, we have $\left[\begin{array}{l}q \\ p\end{array}\right]=\sum_{i: p(1)} y^{q(p[i])}$. Left Kan extension.
■ In particular, we can regard A, B : Set as constant polynomials.

- Then $\left[\begin{array}{c}A \\ B\end{array}\right]=B y^{A}$. Maps between these are "lenses".
$■$ A map $\left[\begin{array}{l}A \\ B\end{array}\right] \rightarrow\left[\begin{array}{c}A^{\prime} \\ B^{\prime}\end{array}\right]$ is a natural transf'n $B y^{A} \rightarrow B^{\prime} y^{A^{\prime}}$. It consists of
\square get: $B \rightarrow B^{\prime}$
- put: $B \times A^{\prime} \rightarrow A$
- These come up in functional programming.

Lenses, Moore machines, and Mealy machines

For any p, q as above, we have $\left[\begin{array}{l}q \\ p\end{array}\right]=\sum_{i: p(1)} y^{q(p[i])}$. Left Kan extension.
■ In particular, we can regard A, B : Set as constant polynomials.

- Then $\left[\begin{array}{c}A \\ B\end{array}\right]=B y^{A}$. Maps between these are "lenses".
$■$ A map $\left[\begin{array}{c}A \\ B\end{array}\right] \rightarrow\left[\begin{array}{c}A^{\prime} \\ B^{\prime}\end{array}\right]$ is a natural transf'n $B y^{A} \rightarrow B^{\prime} y^{A^{\prime}}$. It consists of
- get: $B \rightarrow B^{\prime}$
- put: $B \times A^{\prime} \rightarrow A$
- These come up in functional programming.

Why will this be useful to us?
\square A map $\left[\begin{array}{l}S \\ S\end{array}\right] \rightarrow\left[\begin{array}{c}A \\ B\end{array}\right]$ is a Moore machine. It consists of:

- State set S, a readout $f^{\text {rdt }}: S \rightarrow B$, and dynamics $f^{\text {dyn }}: S \times A \rightarrow S$.

Lenses, Moore machines, and Mealy machines

For any p, q as above, we have $\left[\begin{array}{l}q \\ p\end{array}\right]=\sum_{i: p(1)} y^{q(p[i])}$. Left Kan extension.
■ In particular, we can regard A, B : Set as constant polynomials.

- Then $\left[\begin{array}{l}A \\ B\end{array}\right]=B y^{A}$. Maps between these are "lenses".
\square A map $\left[\begin{array}{c}A \\ B\end{array}\right] \rightarrow\left[\begin{array}{c}A^{\prime} \\ B^{\prime}\end{array}\right]$ is a natural transf'n $B y^{A} \rightarrow B^{\prime} y{ }^{A^{\prime}}$. It consists of
\square get: $B \rightarrow B^{\prime}$
- put: $B \times A^{\prime} \rightarrow A$
- These come up in functional programming.

Why will this be useful to us?
\square A map $\left[\begin{array}{l}S \\ S\end{array}\right] \rightarrow\left[\begin{array}{c}A \\ B\end{array}\right]$ is a Moore machine. It consists of:

- State set S, a readout $\mathrm{fr}^{\text {rdt }}: S \rightarrow B$, and dynamics $f^{\mathrm{dyn}}: S \times A \rightarrow S$.

■ Given some initial $s_{0}: S$ and an input list a_{0}, \ldots, a_{n}, let...
$■ \ldots b_{i}:=f^{\mathrm{rdt}}\left(s_{i}\right)$ and $s_{i+1}:=f^{\mathrm{dyn}}\left(s_{i}, a_{i}\right)$. Get output list b_{0}, \ldots, b_{n}.

Lenses, Moore machines, and Mealy machines

For any p, q as above, we have $\left[\begin{array}{l}q \\ p\end{array}\right]=\sum_{i: p(1)} y^{q(p[i])}$. Left Kan extension.
■ In particular, we can regard A, B : Set as constant polynomials.

- Then $\left[\begin{array}{c}A \\ B\end{array}\right]=B y^{A}$. Maps between these are "lenses".
$■$ A map $\left[\begin{array}{c}A \\ B\end{array}\right] \rightarrow\left[\begin{array}{c}A^{\prime} \\ B^{\prime}\end{array}\right]$ is a natural transf'n $B y^{A} \rightarrow B^{\prime} y^{A^{\prime}}$. It consists of
- get: $B \rightarrow B^{\prime}$
- put: $B \times A^{\prime} \rightarrow A$
- These come up in functional programming.

Why will this be useful to us?
\square A map $\left[\begin{array}{l}S \\ S\end{array}\right] \rightarrow\left[\begin{array}{c}A \\ B\end{array}\right]$ is a Moore machine. It consists of:

- State set S, a readout $\mathrm{fr}^{\text {rdt }}: S \rightarrow B$, and dynamics $f^{\mathrm{dyn}}: S \times A \rightarrow S$.

■ Given some initial $s_{0}: S$ and an input list a_{0}, \ldots, a_{n}, let...
$\square \ldots b_{i}:=f^{\text {rdt }}\left(s_{i}\right)$ and $s_{i+1}:=f^{\text {dyn }}\left(s_{i}, a_{i}\right)$. Get output list b_{0}, \ldots, b_{n}.
■ A map $\left[\begin{array}{c}S \\ S\end{array}\right] \rightarrow[A y, B y]$ is a Mealy machine.

- It consists of state set S and a function $S \times A \rightarrow S \times B$.

■ Again, it can transform a list of inputs into a list of outputs.

Depicting Moore machine interfaces

Here's how we depict interfaces (A, B) for Moore machines:

If, e.g. $A=A_{1} \times A_{2}$ and $B=B_{1} \times B_{2} \times B_{3}$, we will instead draw:

Depicting Moore machine interfaces

Here's how we depict interfaces (A, B) for Moore machines:

If, e.g. $A=A_{1} \times A_{2}$ and $B=B_{1} \times B_{2} \times B_{3}$, we will instead draw:

In Poly these two interfaces are denoted $B y^{A}$ and $B_{1} B_{2} B_{3} y^{A_{1} A_{2}}$.

Wiring diagrams

Here's a picture of a wiring diagram:

It includes three interfaces: Controller, Plant, and System.

$$
\text { Controller }=B y^{C} \quad \text { Plant }=C y^{A B} \quad \text { System }=C y^{A}
$$

Wiring diagrams

Here's a picture of a wiring diagram:

It includes three interfaces: Controller, Plant, and System.

$$
\text { Controller }=B y^{C} \quad \text { Plant }=C y^{A B} \quad \text { System }=C y^{A}
$$

The wiring diagram represents a lens, $\varphi:$ Controller \otimes Plant \rightarrow System.

$$
\varphi: B y^{C} \otimes C y^{A B} \longrightarrow C y^{A}
$$

Moore machines and wiring diagrams as lenses

To summarize what we've said so far:

- A wiring diagram (WD) is a lens, e.g. $B y^{C} \otimes C y^{A B} \longrightarrow C y^{A}$.
- Each Moore machine is a lens, e.g. $S y^{S} \rightarrow B y^{C}$ and $T y^{T} \rightarrow C y^{A B}$.

Moore machines and wiring diagrams as lenses

To summarize what we've said so far:

- A wiring diagram (WD) is a lens, e.g. $B y^{C} \otimes C y^{A B} \longrightarrow C y^{A}$.

■ Each Moore machine is a lens, e.g. $S y^{S} \rightarrow B y^{C}$ and $T y^{T} \rightarrow C y^{A B}$.
We can tensor the Moore machines and compose to obtain $S T y^{S T} \rightarrow C y^{A}$.

- So a wiring diagram is a formula for combining Moore machines.

■ The whole story is lenses (monomials), through and through.
■ For "mode dependence" where interfaces can change, use gen'l polys.

Category theory in Computer Science

Category theory has been useful in computer science.
■ Simply-typed lambda calculus as base for functional programming.
■ E.g. in Haskell, types are objects, programs are morphisms.
■ STLC a cartesian closed category: tupling and function types.
■ Side effects are handled by monads.

Category theory in Computer Science

Category theory has been useful in computer science.
■ Simply-typed lambda calculus as base for functional programming.
■ E.g. in Haskell, types are objects, programs are morphisms.
■ STLC a cartesian closed category: tupling and function types.
■ Side effects are handled by monads.
Poly can add a lot to this story.
■ First, note that it's already involved in many ways.

- Algebraic data types are free monads on polynomial functors.

■ Initial algebras and final coalgebras for poly's are very common.

- Lenses are maps between monomials.

■ But we will see that Poly goes far beyond functional programming.
■ We've seen it's relevant for state (Moore/Mealy) machines. Also:

- Databases and data migration,
- Dependent type theory,
- Effects handling,
- Rewriting workflows,
- Deep learning

Next up: laundry list of polynomials in action: unreasonable effectiveness.

Functional programming

In functional languages such as Haskell, you often see things like this:

$$
\begin{aligned}
& \text { data Foo y = Bar y y y | Baz y y | Qux | Quux } \\
& \text { data Maybe y = Just y | Nothing }
\end{aligned}
$$

- These are polynomials: $y^{3}+y^{2}+2$ and $y+1$ respectively.

■ They're "polymorphic" in that
■ they act on any Haskell type Y in place of the variable y, and
■ for any map f : Y1 -> Y2 there's a map Foo Y1 -> Foo Y2

Functional programming

In functional languages such as Haskell, you often see things like this:

$$
\begin{aligned}
& \text { data Foo y = Bar y y y | Baz y y | Qux | Quux } \\
& \text { data Maybe y = Just y | Nothing }
\end{aligned}
$$

- These are polynomials: $\mathrm{y}^{3}+\mathrm{y}^{2}+2$ and $\mathrm{y}+1$ respectively.

■ They're "polymorphic" in that
■ they act on any Haskell type Y in place of the variable y, and
■ for any map f : Y1 \rightarrow Y2 there's a map Foo Y1 \rightarrow Foo Y2
Another thing you see in Haskell is something like this:

```
    List a = Nil | Cons a (List a)
```

What is going on here?
■ This the algebraic data type corresponding to $p_{A}:=1+A y$.

Functional programming

In functional languages such as Haskell, you often see things like this:

$$
\begin{aligned}
& \text { data Foo y = Bar y y y | Baz y y | Qux | Quux } \\
& \text { data Maybe y = Just y | Nothing }
\end{aligned}
$$

- These are polynomials: $\mathrm{y}^{3}+\mathrm{y}^{2}+2$ and $\mathrm{y}+1$ respectively.

■ They're "polymorphic" in that
■ they act on any Haskell type Y in place of the variable y , and
■ for any map f : Y1 -> Y2 there's a map Foo Y1 -> Foo Y2
Another thing you see in Haskell is something like this:

```
List a = Nil | Cons a (List a)
```

What is going on here?
■ This the algebraic data type corresponding to $p_{A}:=1+A y$.

- Every polynomial has an initial algebra and final coalgebra.

■ The initial algebra of p_{A} is carried by $\sum_{n: \mathbb{N}} A^{n}$, classic lists.
■ The terminal coalgebra of p_{A} is carried by $A^{\mathbb{N}}+\sum_{n: \mathbb{N}} A^{n}$, streams.

Databases and data migration

Databases are used throughout computer science.
■ A database consists of a schema, the things and how they relate,...
■ ...and data, which are examples of the things and their relationships.
■ A useful CT story for this: schema = category, data $=$ functor to Set.

- Data migration means moving data from one schema to another.
- The most useful: disjoint unions of conjunctive (duc-) queries.

Databases and data migration

Databases are used throughout computer science.
■ A database consists of a schema, the things and how they relate,...
■ ...and data, which are examples of the things and their relationships.
■ A useful CT story for this: schema = category, data $=$ functor to Set.
■ Data migration means moving data from one schema to another.

- The most useful: disjoint unions of conjunctive (duc-) queries.

All of this has a beautiful story in terms of polynomial functors.
■ Indeed, schema $=$ category $C=$ polynomial comonad (c, ϵ, δ).
■ And data $=$ functor $C \rightarrow$ Set $=c$-coalgebra.
■ Data migrations from C to \mathscr{D} are exactly (c, d)-bicomodules.

Databases and data migration

Databases are used throughout computer science.
■ A database consists of a schema, the things and how they relate,...
■ ...and data, which are examples of the things and their relationships.
■ A useful CT story for this: schema = category, data $=$ functor to Set.
■ Data migration means moving data from one schema to another.

- The most useful: disjoint unions of conjunctive (duc-) queries.

All of this has a beautiful story in terms of polynomial functors.
■ Indeed, schema $=$ category $C=$ polynomial comonad (c, ϵ, δ).
■ And data $=$ functor $C \rightarrow$ Set $=c$-coalgebra.
■ Data migrations from C to \mathscr{D} are exactly (c, d)-bicomodules.
Often databases are considered ugly, but the math here is cat'ly very clean.

Dependent type theory

Dependent types are what proof assistants like Coq\&Lean are based on.
■ Idea: a type can depend on values of another type.
■ Eg: a category consists of a type O of objects and then...
■ ...for every $o_{1}, o_{2}: O$, a type $M\left(o_{1}, o_{2}\right)$ of morphisms and then...
$■$...identities, compositions, rules, all depending on the previous stuff.

Dependent type theory

Dependent types are what proof assistants like Coq\&Lean are based on.
■ Idea: a type can depend on values of another type.
■ Eg: a category consists of a type O of objects and then...
■ ...for every $o_{1}, o_{2}: O$, a type $M\left(o_{1}, o_{2}\right)$ of morphisms and then...
■ ...identities, compositions, rules, all depending on the previous stuff. Following Awodey, there's a tight connection between poly's and DTT.

■ You can model dependent type theory as...
■ ...a cartesian polynomial monad (m, η, μ) and a pseudo-algebra for it.
■ Idea: recall our conception of m as "types and terms".

Dependent type theory

Dependent types are what proof assistants like Coq\&Lean are based on.

- Idea: a type can depend on values of another type.

■ Eg: a category consists of a type O of objects and then...
■ ...for every $o_{1}, o_{2}: O$, a type $M\left(o_{1}, o_{2}\right)$ of morphisms and then...
■ ...identities, compositions, rules, all depending on the previous stuff. Following Awodey, there's a tight connection between poly's and DTT.

■ You can model dependent type theory as...
■ ...a cartesian polynomial monad (m, η, μ) and a pseudo-algebra for it.
■ Idea: recall our conception of m as "types and terms".
■ A type in $m \triangleleft m$ is: a type in m and for every term, a type in m.
■ The multiplication map $\mu: m \triangleleft m \rightarrow m$ realizes every such...
■ ...compound type as a type in m. This tells you how to interpret Σ.
■ You can interpret Π-types using a m-pseudoalgebra.

- The type-forming and term-forming rules of DTT arise as the axioms.

Dependent type theory

Dependent types are what proof assistants like Coq\&Lean are based on.

- Idea: a type can depend on values of another type.

■ Eg: a category consists of a type O of objects and then...
■ ...for every $o_{1}, o_{2}: O$, a type $M\left(o_{1}, o_{2}\right)$ of morphisms and then...
■ ...identities, compositions, rules, all depending on the previous stuff.
Following Awodey, there's a tight connection between poly's and DTT.
■ You can model dependent type theory as...
■ ...a cartesian polynomial monad (m, η, μ) and a pseudo-algebra for it.
■ Idea: recall our conception of m as "types and terms".
■ A type in $m \triangleleft m$ is: a type in m and for every term, a type in m.
■ The multiplication map $\mu: m \triangleleft m \rightarrow m$ realizes every such...
■ ...compound type as a type in m. This tells you how to interpret Σ.
■ You can interpret Π-types using a m-pseudoalgebra.

- The type-forming and term-forming rules of DTT arise as the axioms. So the high-level language of proof assistants has semantics in Poly.

Outline

1 Introduction

2 Introduction to Poly

3 The monoidal double category $\mathbb{O r g}$ of dynamic organizations
■ Categories where the morphisms are changing

- Recalling the internal hom for Poly

■ The monoidal double category $\mathbb{O} \mathbf{r g}$

- ANNs in terms of $\mathbb{O} \mathbf{r g}$

■ Prediction markets in terms of $\mathbb{O} \mathbf{r g}$

- Dynamic organizational systems

4 Conclusion

Categories where the morphisms are changing

Imagine something like Set, except that morphisms are dynamic.
\square For sets A, B, a morphism $f: A \rightarrow B$ is a machine with states S.
■ In its current state $s: S$, it outputs an actual function $f_{s}: A \rightarrow B$.
■ Given an input $a: A$, it not only tells you $f_{s}(a)$ but updates its state.
■ I want to call refer to a morphism f as a dynamic function.

Categories where the morphisms are changing

Imagine something like Set, except that morphisms are dynamic.
■ For sets A, B, a morphism $f: A \rightarrow B$ is a machine with states S.
■ In its current state $s: S$, it outputs an actual function $f_{s}: A \rightarrow B$.
■ Given an input a: A, it not only tells you $f_{s}(a)$ but updates its state.
■ I want to call refer to a morphism f as a dynamic function.
Dynamic morphisms of the above sort have a simple Poly-description.
■ As we said, the internal hom $[A y, B y]$: Poly is given by $A^{B} y^{B}$.
■ A $[A y, B y]$-coalgebra is a Mealy machine $S \times A \rightarrow S \times B$.

- This is a machine with the description above, a dynamic function.

Categories where the morphisms are changing

Imagine something like Set, except that morphisms are dynamic.
■ For sets A, B, a morphism $f: A \rightarrow B$ is a machine with states S.
■ In its current state $s: S$, it outputs an actual function $f_{s}: A \rightarrow B$.
■ Given an input $a: A$, it not only tells you $f_{s}(a)$ but updates its state.
■ I want to call refer to a morphism f as a dynamic function.
Dynamic morphisms of the above sort have a simple Poly-description.
■ As we said, the internal hom $[A y, B y]$: Poly is given by $A^{B} y^{B}$.
■ A $[A y, B y]$-coalgebra is a Mealy machine $S \times A \rightarrow S \times B$.

- This is a machine with the description above, a dynamic function.

We can generalize this by replacing $A y$ and $B y$ by arbitrary polynomials.

- The resulting formalism is a setting for ANNs and prediction markets.

Recalling the internal hom for Poly

The \otimes-product is closed

$$
\operatorname{Poly}\left(p^{\prime} \otimes p, q\right) \cong \operatorname{Poly}\left(p^{\prime},[p, q]\right)
$$

This closure turns out to be surprisingly relevant in applic'ns. It's given by

$$
[p, q] \cong \sum_{\varphi: p \rightarrow q} y^{\sum_{l: p(1)} q\left[\varphi_{1} /\right]}
$$

■ Its set of positions is $\operatorname{Poly}(p, q)$, the set of usual poly maps $p \rightarrow q$.
■ Makes more sense with $\left[p_{1} \otimes \cdots \otimes p_{k}, q\right]$.

- Positions here are interaction patterns (generalized WDs) of $p^{\prime} s$ in q.

■ A state machine $S y^{S} \rightarrow\left[p_{1} \otimes \cdots \otimes p_{k}, q\right]$ outputs interaction patt'ns.
■ It inputs "the data flowing along the wires" from moment to moment.

Recalling the internal hom for Poly

The \otimes-product is closed

$$
\operatorname{Poly}\left(p^{\prime} \otimes p, q\right) \cong \operatorname{Poly}\left(p^{\prime},[p, q]\right)
$$

This closure turns out to be surprisingly relevant in applic'ns. It's given by

$$
[p, q] \cong \sum_{\varphi: p \rightarrow q} y^{\sum_{l: p(1)} q\left[\varphi_{1} /\right]}
$$

■ Its set of positions is $\operatorname{Poly}(p, q)$, the set of usual poly maps $p \rightarrow q$.
■ Makes more sense with $\left[p_{1} \otimes \cdots \otimes p_{k}, q\right]$.

- Positions here are interaction patterns (generalized WDs) of $p^{\prime} s$ in q.

■ A state machine $S y^{S} \rightarrow\left[p_{1} \otimes \cdots \otimes p_{k}, q\right]$ outputs interaction patt'ns.
■ It inputs "the data flowing along the wires" from moment to moment.
This is the basis for machines that adapt / rewire themselves.

- They have some structure now (the current interaction pattern).
- They can reconfigure it based on what flows through them.

Preparing to define $\mathbb{O} \mathbf{r g}$

We're about ready to define © $\mathbf{r g}$. We just need some basic facts.
■ In any monoidal closed category (notation from Poly), one has maps

$$
\begin{gathered}
y \rightarrow[p, p] \quad[p, q] \otimes[q, r] \rightarrow[p, r] \\
{[p, q] \otimes\left[p^{\prime}, q^{\prime}\right] \rightarrow\left[p \otimes p^{\prime}, q \otimes q^{\prime}\right]}
\end{gathered}
$$

Preparing to define $\mathbb{O} \mathbf{r g}$

We're about ready to define $\mathbb{O} \mathbf{r g}$. We just need some basic facts.
■ In any monoidal closed category (notation from Poly), one has maps

$$
\begin{gathered}
y \rightarrow[p, p] \quad[p, q] \otimes[q, r] \rightarrow[p, r] \\
{[p, q] \otimes\left[p^{\prime}, q^{\prime}\right] \rightarrow\left[p \otimes p^{\prime}, q \otimes q^{\prime}\right]}
\end{gathered}
$$

■ The functor Poly \rightarrow Cat given by $p \mapsto p$-Coalg is lax monoidal

$$
1 \rightarrow y \text {-Coalg } \quad p \text {-Coalg } \times q \text {-Coalg } \rightarrow(p \otimes q) \text {-Coalg }
$$

Intuition on $[p, q]$-Coalg

For p : Poly, a p-coalgebra is a pair (S, α) where S : Set and $\alpha: S \rightarrow p(S)$.
■ Equivalently it is also a map $\left[\begin{array}{l}S \\ S\end{array}\right] \rightarrow p$.

- If $p=B y^{A}$ then a p-coalgebra is an (A, B)-Moore machine.

■ If $q=[A y, B y]$ then a q-coalgebra is an (A, B)-Mealy machine.

- For each $s: S$, we obtain a position $\alpha_{1}(s): p(1)$ of p and...
$■ \ldots$ for every direction of $i: p\left[\alpha_{1}(s)\right]$, we get a new state $\alpha^{\sharp}(s, i): S$.

Intuition on $[p, q]$-Coalg

For p : Poly, a p-coalgebra is a pair (S, α) where S : Set and $\alpha: S \rightarrow p(S)$.
■ Equivalently it is also a map $\left[\begin{array}{l}S \\ S\end{array}\right] \rightarrow p$.
■ If $p=B y^{A}$ then a p-coalgebra is an (A, B)-Moore machine.
■ If $q=[A y, B y]$ then a q-coalgebra is an (A, B)-Mealy machine.
■ For each $s: S$, we obtain a position $\alpha_{1}(s): p(1)$ of p and...
$■ \ldots$ for every direction of $i: p\left[\alpha_{1}(s)\right]$, we get a new state $\alpha^{\sharp}(s, i): S$.
A morphism of p-coalgebras is a map $f: S \rightarrow T$ with the relevant equation
■ It ensures that for any $s: S$, the behaviors of s and $f(s)$ are identical.
■ Behaviorally, a map $S \rightarrow T$ says that any S behavior is a T-behavior.

Intuition on $[p, q]$-Coalg

For p : Poly, a p-coalgebra is a pair (S, α) where S : Set and $\alpha: S \rightarrow p(S)$.
■ Equivalently it is also a map $\left[\begin{array}{l}S \\ S\end{array}\right] \rightarrow p$.
■ If $p=B y^{A}$ then a p-coalgebra is an (A, B)-Moore machine.
■ If $q=[A y, B y]$ then a q-coalgebra is an (A, B)-Mealy machine.

- For each $s: S$, we obtain a position $\alpha_{1}(s)$: $p(1)$ of p and...

■ ... for every direction of $i: p\left[\alpha_{1}(s)\right]$, we get a new state $\alpha^{\sharp}(s, i): S$.
A morphism of p-coalgebras is a map $f: S \rightarrow T$ with the relevant equation
$■$ It ensures that for any $s: S$, the behaviors of s and $f(s)$ are identical.
■ Behaviorally, a map $S \rightarrow T$ says that any S behavior is a T-behavior.
How do we think of $[p, q]$-Coalg? An object consists of
■ a set S : Set of "states" (or think "parameters").
■ For each $s: S$ we get a Poly map $\varphi_{s}: p \rightarrow q$ and \ldots
■ ... for each pair $\left(I: p(1), j: q\left[\varphi_{s} I\right]\right)$, we get a new state in S.
More intuition on the next slide.

Definition of $\mathbb{O r g}$

We can now define the bicategory $\mathbb{O} \mathbf{r g}$.
■ $\mathrm{Ob}(\mathbb{O} \mathbf{r g}):=\mathrm{Ob}($ Poly $)$, objects are polynomials.
■ $\mathbb{O} \mathbf{r g}(p, q):=[p, q]$-Coalg.
Example: suppose $p=B y^{C} \otimes C y^{A B}$ and $q=C y^{A}$.
■ Then for any state $s: S$ of a $[p, q]$-coalgebra (S, f), we have...
■ first of all, a map $p \rightarrow q$. For example, we may have this one:

■ That is, we're outputting interaction patterns.

Definition of $\mathbb{O r g}$

We can now define the bicategory $\mathbb{O} \mathbf{r g}$.
$\square \mathrm{Ob}(\mathbb{O r g}):=\mathrm{Ob}($ Poly $)$, objects are polynomials.
■ $\mathbb{O} \mathbf{r g}(p, q):=[p, q]$-Coalg.
Example: suppose $p=B y^{C} \otimes C y^{A B}$ and $q=C y^{A}$.
■ Then for any state $s: S$ of a $[p, q]$-coalgebra (S, f), we have...
■ first of all, a map $p \rightarrow q$. For example, we may have this one:

■ That is, we're outputting interaction patterns.
■ An input (to get a new state) is "everything flowing on the wires".
■ That is, a tuple $(a, b, c): A \times B \times C$. This data updates the state.
■ So (S, f) outputs interaction patterns and listens to what flows.

ANNs in terms of $\mathbb{O} r g$

We can now describe artificial neural networks in this language.
■ Let $t:=\sum_{x \in \mathbb{R}} y^{T_{x}^{*} \mathbb{R}} \cong \mathbb{R} y^{\mathbb{R}}$.
■ So "positions of t " $=$ points in \mathbb{R} and "directions" = gradients.
■ Note that $t \otimes t \cong \sum_{x \in \mathbb{R}^{2}} y^{T_{x}^{*} \mathbb{R}^{2}} \cong \mathbb{R}^{2} y^{\mathbb{R}^{2}}$ and similarly for any $t^{\otimes n}$.

ANNs in terms of $\mathbb{O r g}$

We can now describe artificial neural networks in this language.
■ Let $t:=\sum_{x \in \mathbb{R}} y^{T_{x}^{*} \mathbb{R}} \cong \mathbb{R} y^{\mathbb{R}}$.
■ So "positions of t " $=$ points in \mathbb{R} and "directions" = gradients.
■ Note that $t \otimes t \cong \sum_{x \in \mathbb{R}^{2}} y^{T_{x}^{*} \mathbb{R}^{2}} \cong \mathbb{R}^{2} y^{\mathbb{R}^{2}}$ and similarly for any $t^{\otimes n}$. $\mathrm{A}\left[t^{\otimes m}, t^{\otimes n}\right]$-coalgebra consists of:

■ A set S of states / parameters, and for each $s: S \ldots$
■ ... a function $f_{s}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ and \ldots

- ... a function $\left(x: \mathbb{R}^{m}\right) \times\left(y^{\prime}: T_{f_{s}(x)}^{*} \mathbb{R}^{n}\right) \rightarrow S \times T_{s}^{*} \mathbb{R}^{m}$.

ANNs in terms of $\mathbb{O} \mathbf{r g}$

We can now describe artificial neural networks in this language.
$■$ Let $t:=\sum_{x \in \mathbb{R}} y^{T_{x}^{*} \mathbb{R}} \cong \mathbb{R} y^{\mathbb{R}}$.
\square So "positions of t " $=$ points in \mathbb{R} and "directions" = gradients.
■ Note that $t \otimes t \cong \sum_{x \in \mathbb{R}^{2}} y^{T_{x}^{*} \mathbb{R}^{2}} \cong \mathbb{R}^{2} y^{\mathbb{R}^{2}}$ and similarly for any $t^{\otimes n}$. $\mathrm{A}\left[t^{\otimes m}, t^{\otimes n}\right]$-coalgebra consists of:

■ A set S of states / parameters, and for each $s: S \ldots$
■ ... a function $f_{s}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ and \ldots
■ ... a function $\left(x: \mathbb{R}^{m}\right) \times\left(y^{\prime}: T_{f_{s}(x)}^{*} \mathbb{R}^{n}\right) \rightarrow S \times T_{s}^{*} \mathbb{R}^{m}$.
This latter thing might be called "update and backprop".
■ It takes an input $x: \mathbb{R}^{m}$ and a gradient $y^{\prime}: T_{f(s)}^{*} \mathbb{R}^{n}$ and returns...
■ ...a new/updated state $s^{\prime}: S$ and a backprop'd gradient $x^{\prime}: T_{s}^{*} \mathbb{R}^{m}$.

ANNs in terms of $\mathbb{O} \mathbf{r g}$

We can now describe artificial neural networks in this language.
$■$ Let $t:=\sum_{x \in \mathbb{R}} y^{T_{x}^{*} \mathbb{R}} \cong \mathbb{R} y^{\mathbb{R}}$.
■ So "positions of t " $=$ points in \mathbb{R} and "directions" = gradients.
■ Note that $t \otimes t \cong \sum_{x \in \mathbb{R}^{2}} y^{T_{x}^{*} \mathbb{R}^{2}} \cong \mathbb{R}^{2} y^{\mathbb{R}^{2}}$ and similarly for any $t^{\otimes n}$. $\mathrm{A}\left[t^{\otimes m}, t^{\otimes n}\right]$-coalgebra consists of:

■ A set S of states / parameters, and for each $s: S \ldots$
■ ... a function $f_{s}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ and \ldots
$\square \ldots$ a function $\left(x: \mathbb{R}^{m}\right) \times\left(y^{\prime}: T_{f_{s}(x)}^{*} \mathbb{R}^{n}\right) \rightarrow S \times T_{s}^{*} \mathbb{R}^{m}$.
This latter thing might be called "update and backprop".

- It takes an input $x: \mathbb{R}^{m}$ and a gradient $y^{\prime}: T_{f(s)}^{*} \mathbb{R}^{n}$ and returns...

■ ...a new/updated state $s^{\prime}: S$ and a backprop'd gradient $x^{\prime}: T_{s}^{*} \mathbb{R}^{m}$. There are many such $\left[t^{\otimes m}, t^{\otimes n}\right]$-coalgebras.
$■$ One has carrier $S:=\left\{P: \mathbb{N}, f: P \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}\right.$ differentiable, $\left.p: P\right\}$.
■ The state (P, f, p) updated by training pair $\left(x: \mathbb{R}^{m}, y^{\prime}: T_{f(p, x)}^{*} \mathbb{R}^{n}\right)$
■ ... is $\left(P, f, p^{\prime}\right)$ where $p^{\prime}:=p+\pi_{P}\left(D f_{(p, x)}^{\top} \cdot y^{\prime}\right)$

Model of prediction markets

Let's consider a simple version of a prediction market. Suppose:
■ There is a fixed finite set X of outcomes.
■ Each participant can output a prediction $P: \Delta_{+}(X)$ where

$$
\Delta_{+}(X):=\left\{P: X \rightarrow(0,1] \mid 1=\sum_{x \in X} P(x)\right\}
$$

■ Each participant then receives the result, an element $x: X$.

Model of prediction markets

Let's consider a simple version of a prediction market. Suppose:
■ There is a fixed finite set X of outcomes.
■ Each participant can output a prediction $P: \Delta_{+}(X)$ where

$$
\Delta_{+}(X):=\left\{P: X \rightarrow(0,1] \mid 1=\sum_{x \in X} P(x)\right\}
$$

■ Each participant then receives the result, an element $x: X$. It's compositional if we assign predictors a relative "trust" / "wealth".
$■$ Let n be a finite set of predictors. A relative trust is $t: \Delta(n)$.
■ Given $n: \mathbb{N}, t$, and predictors $P_{1}, \ldots, P_{n}: \Delta_{+}(X), \ldots$
■ ...we get a new predictor $t \cdot P=t(1) * P_{1}+\cdots+t(n) * P_{n}$.
■ I.e., we multiply each prediction by how much we trust its predictor.

Prediction markets in terms of $\mathbb{O r g}$

Fix X : Fin. We use the polynomial $p:=\Delta_{+}(X) y^{X}$ to model a predictor.
$■$ It outputs a prediction $P: \Delta_{+}(X)$ and inputs an actual outcome $x: X$.

- Then $p^{\otimes n}$ outputs n predictions and receives n outcomes.

■ Consider the polynomial $\left[p^{\otimes n}, p\right]$. A position includes:...

- ...a function $\Delta_{+}(X)^{n} \rightarrow \Delta_{+}(X)$, and a function $X \rightarrow X^{n}$. ...

■ It's a way to combine n predictions into one and distribute outcomes.
■ A direction of $\left[p^{\otimes n}, p\right]$ consists of: n-many pred'ns and one outcome.

Prediction markets in terms of $\mathbb{O} \mathbf{r g}$

Fix X : Fin. We use the polynomial $p:=\Delta_{+}(X) y^{X}$ to model a predictor.
\square It outputs a prediction $P: \Delta_{+}(X)$ and inputs an actual outcome $x: X$.

- Then $p^{\otimes n}$ outputs n predictions and receives n outcomes.
$■$ Consider the polynomial $\left[p^{\otimes n}, p\right]$. A position includes:...
■ ...a function $\Delta_{+}(X)^{n} \rightarrow \Delta_{+}(X)$, and a function $X \rightarrow X^{n}$. ...
■ It's a way to combine n predictions into one and distribute outcomes.
■ A direction of $\left[p^{\otimes n}, p\right]$ consists of: n-many pred'ns and one outcome.
The category of maps $p^{\otimes n} \rightarrow p$ in $\mathbb{O} \mathbf{r g}$ is $\left[p^{\otimes n}, p\right]$-Coalg.
$■$ Such a coalgebra consists of a set T_{n} and for each $t: T_{n}, \ldots$
■ ...a function $\Delta_{+}(X)^{n} \rightarrow \Delta_{+}(X)$, a function $X \rightarrow X^{n}$, and...
■ ...given n predictions P_{1}, \ldots, P_{n} and an outcome x, a new state.

Prediction markets in terms of $\mathbb{O} \mathbf{r g}$

Fix X : Fin. We use the polynomial $p:=\Delta_{+}(X) y^{X}$ to model a predictor.

- It outputs a prediction $P: \Delta_{+}(X)$ and inputs an actual outcome $x: X$.
- Then $p^{\otimes n}$ outputs n predictions and receives n outcomes.
- Consider the polynomial $\left[p^{\otimes n}, p\right]$. A position includes:...
- ...a function $\Delta_{+}(X)^{n} \rightarrow \Delta_{+}(X)$, and a function $X \rightarrow X^{n}$....
- It's a way to combine n predictions into one and distribute outcomes.
- A direction of $\left[p^{\otimes n}, p\right]$ consists of: n-many pred'ns and one outcome.

The category of maps $p^{\otimes n} \rightarrow p$ in $\mathbb{O} \mathbf{r g}$ is $\left[p^{\otimes n}, p\right]$-Coalg.

- Such a coalgebra consists of a set T_{n} and for each $t: T_{n}, \ldots$
- ...a function $\Delta_{+}(X)^{n} \rightarrow \Delta_{+}(X)$, a function $X \rightarrow X^{n}$, and...
- ...given n predictions P_{1}, \ldots, P_{n} and an outcome x, a new state.

There are many such coalgebras. The one for us is:

- Take $T_{n}:=\Delta_{n}$, the set of "relative trust levels" for n players.
- Given $t: T_{n}$, use $t \cdot-: \Delta_{+}(X)^{n} \rightarrow \Delta_{+}(X)$ and $x \mapsto(x, x, \ldots, x)$.

■ Given pred'ns $\left(P_{i}\right)_{i: n}$ and outcome x, use Bayesian upd. to get new t^{\prime}.

What ANNs and prediction markets have in common

We'll now abstract a common feature of ANNs and prediction markets.
■ In both ANNs and prediction markets, we have a certain polynomial:
$■$ For ANNs it's $t:=\sum_{x: \mathbb{R}} y^{T_{x}^{*} \mathbb{R}}$ and for PMs it's $p:=\Delta_{+}(X) y^{X}$.
■ In both we look at certain internal homs, and their coalgebras:
■ For ANNs it's $\left[t^{\otimes m}, t^{\otimes n}\right]$-Coalg and for PMs it's [$\left.p^{\otimes n}, p\right]$-Coalg.

What ANNs and prediction markets have in common

We'll now abstract a common feature of ANNs and prediction markets.
■ In both ANNs and prediction markets, we have a certain polynomial:
\square For ANNs it's $t:=\sum_{x: \mathbb{R}} y^{T_{x}^{*} \mathbb{R}}$ and for PMs it's $p:=\Delta_{+}(X) y^{X}$.
■ In both we look at certain internal homs, and their coalgebras:
$■$ For ANNs it's $\left[t^{\otimes m}, t^{\otimes n}\right]$-Coalg and for PMs it's [$\left.p^{\otimes n}, p\right]$-Coalg.
How do we think of these coalgebras in terms of state machines?
■ In ANNs, the states are parameters; in PMs they are trust levels.

- An ANN uses params to output a function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$.

■ A PM uses trusts to output a function $\Delta_{+}(X)^{n} \rightarrow \Delta_{+}(X)$.

- The ANN updates by grad. descent and the PM updates using Bayes.

What ANNs and prediction markets have in common

We'll now abstract a common feature of ANNs and prediction markets.
■ In both ANNs and prediction markets, we have a certain polynomial:
\square For ANNs it's $t:=\sum_{x: \mathbb{R}} y^{T_{x}^{*} \mathbb{R}}$ and for PMs it's $p:=\Delta_{+}(X) y^{X}$.
■ In both we look at certain internal homs, and their coalgebras:
$■$ For ANNs it's $\left[t^{\otimes m}, t^{\otimes n}\right]$-Coalg and for PMs it's [$\left.p^{\otimes n}, p\right]$-Coalg.
How do we think of these coalgebras in terms of state machines?
■ In ANNs, the states are parameters; in PMs they are trust levels.
■ An ANN uses params to output a function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$.
■ A PM uses trusts to output a function $\Delta_{+}(X)^{n} \rightarrow \Delta_{+}(X)$.

- The ANN updates by grad. descent and the PM updates using Bayes.

ANNs and PMs have one more thing is in common: compositionality.
■ For both ANNs and PMs, the same formula holds regardless of m, n.
■ In particular, both are stable under composition.
■ We can make this more formal with a simple definition.

Dynamic organizational systems: enrichment in $\mathbb{O r g}$

A dynamic categorical structure is a categorical structure enriched in $\mathbb{O} \mathbf{r g}$.

- A dynamic operad is an operad enriched in $\mathbb{O r g}$.

■ A dynamic monoidal category is a monoidal category enriched in $\mathbb{O} \mathbf{r g}$.
■ All these are defined in a paper with BT Shapiro (arXiv:2205.03906).
■ PMs form a dynamic operad, ANNs form a dynamic monoidal cat'y.

Dynamic organizational systems: enrichment in $\mathbb{O r g}$

A dynamic categorical structure is a categorical structure enriched in $\mathbb{O} \mathbf{r g}$.
■ A dynamic operad is an operad enriched in $\mathbb{O r g}$.
■ A dynamic monoidal category is a monoidal category enriched in ©rg.
■ All these are defined in a paper with BT Shapiro (arXiv:2205.03906).
■ PMs form a dynamic operad, ANNs form a dynamic monoidal cat'y. What does it mean?

■ It's a categorical structure where the morphisms are dynamic.
■ As the morphisms are "used" they change/adapt/update.

- The morphisms in ANNs are parameterized by weights that change.

■ The morphisms in PMs are parameterized by wealths that change.

Dynamic organizational systems: enrichment in $\mathbb{O r g}$

A dynamic categorical structure is a categorical structure enriched in $\mathbb{O} \mathbf{r g}$.
■ A dynamic operad is an operad enriched in $\mathbb{O r g}$.
■ A dynamic monoidal category is a monoidal category enriched in ©rg.
■ All these are defined in a paper with BT Shapiro (arXiv:2205.03906).
■ PMs form a dynamic operad, ANNs form a dynamic monoidal cat'y.
What does it mean?

- It's a categorical structure where the morphisms are dynamic.

■ As the morphisms are "used" they change/adapt/update.

- The morphisms in ANNs are parameterized by weights that change.

■ The morphisms in PMs are parameterized by wealths that change.
Finally, these dynamics are stable under series and parallel composition.

- For ANNs composition is a map

$$
\left[t^{\otimes m}, t^{\otimes n}\right] \text {-Coalg } \times\left[t^{\otimes n}, t^{\otimes o}\right] \text {-Coalg } \rightarrow\left[t^{\otimes m}, t^{\otimes o}\right] \text {-Coalg }
$$

■ This is a categorical expression of the chain rule.

Outline

1 Introduction

2 Introduction to Poly

3 The monoidal double category Org of dynamic organizations

4 Conclusion

- Summary

Summary

Poly has tons of ready-made structure for CS.
■ It is the most structured category l've seen, and full of surprises.
$■ \mathbb{O r g}$ is very simple: $\mathrm{Ob}=\mathrm{Ob}(\operatorname{Poly})$ and $\operatorname{Hom}(p, q)=[p, q]$-Coalg.

Summary

Poly has tons of ready-made structure for CS.
■ It is the most structured category l've seen, and full of surprises.
$\square \mathbb{O r g}$ is very simple: $\mathrm{Ob}=\mathrm{Ob}(\operatorname{Poly})$ and $\operatorname{Hom}(p, q)=[p, q]$-Coalg.
A dynamic category is a category enriched in $\mathbb{O r g}$.
■ It's got ordinary objects but its morphisms are dynamic: ...
■ ... They change based on what flows through them.
■ Dynamic operads, etc. are defined similarly.

Summary

Poly has tons of ready-made structure for CS.
■ It is the most structured category l've seen, and full of surprises.

- $\mathbb{O} \mathbf{r g}$ is very simple: $\mathrm{Ob}=\mathrm{Ob}($ Poly $)$ and $\operatorname{Hom}(p, q)=[p, q]$-Coalg.

A dynamic category is a category enriched in $\mathbb{O r g}$.
■ It's got ordinary objects but its morphisms are dynamic: ...
■ ... They change based on what flows through them.
■ Dynamic operads, etc. are defined similarly.
There are several examples of dynamic categorical systems.

- Today we discussed ANNs and prediction markets.
- There's also a model of Hebbian learning as dynamic monoidal cat'y.

■ If you find another dynamic categorical system, please let me know!

Summary

Poly has tons of ready-made structure for CS.
■ It is the most structured category l've seen, and full of surprises.

- Org is very simple: $\mathrm{Ob}=\mathrm{Ob}$ (Poly) and $\operatorname{Hom}(p, q)=[p, q]$-Coalg.

A dynamic category is a category enriched in $\mathbb{O r g}$.
■ It's got ordinary objects but its morphisms are dynamic: ...
■ ... They change based on what flows through them.
■ Dynamic operads, etc. are defined similarly.
There are several examples of dynamic categorical systems.

- Today we discussed ANNs and prediction markets.
- There's also a model of Hebbian learning as dynamic monoidal cat'y.

■ If you find another dynamic categorical system, please let me know!
Open question: dynamic org'l system for autopoiesis / sense-making?

Summary

Poly has tons of ready-made structure for CS.
■ It is the most structured category l've seen, and full of surprises.

- Org is very simple: $\mathrm{Ob}=\mathrm{Ob}$ (Poly) and $\operatorname{Hom}(p, q)=[p, q]$-Coalg.

A dynamic category is a category enriched in $\mathbb{O r g}$.
■ It's got ordinary objects but its morphisms are dynamic: ...
■ ... They change based on what flows through them.
■ Dynamic operads, etc. are defined similarly.
There are several examples of dynamic categorical systems.

- Today we discussed ANNs and prediction markets.
- There's also a model of Hebbian learning as dynamic monoidal cat'y.

■ If you find another dynamic categorical system, please let me know!
Open question: dynamic org'l system for autopoiesis / sense-making?
Thanks! Comments and questions welcome...

