Categorical Dataflow

Lenses and Optics as data structures for backpropagation

& A

l iAH J/ Bruno Gavranovic
it :

' S

Cats4Al
24 October 2022




Q.
©
O
L
oc



Recap: Week 1

Category theory takes a bird’s eye view of mathematics. From
high in the sky, details become invisible, but we can spot
patterns that were impossible to detect from ground level.

G

Tom Leinster, Basic Category Theory



Recap: Week 2

e We began to give concrete definitions



Category: definition

A category: a unlverse of objects and morphlsms between them, s.t.:

(The word “universe” is used here deliberate ead of “set”, to avoid ¢
Forf: A—B and g :B—C, there is a composition, g°f: A—C
For each object A, there is a unique identity morphismid, : A—A
For any morphism f:A—B, it holds thatid  °f = foid, = f
For any composable f, g, h, we have ho(gof) = (hog)°f

The collection of morphisms between A and B is often denoted Hom(A, B)




Category: examples

e Set - sets and functions

e Rel-sets and relations

e Vect - vector spaces and linear transformations

e/ R-numbers and order relations

e Grp - single objects, group elements are morphisms



Constructions inside categories

Monomorphisms
Epimorphisms
Products
Coproducts
Exponential objects



')
ap?
Q
—
L]
O
ol




Pattern-hunting for the product

In some sense, AxB is the “minimal” combination of data

in A and B. Therefore, if any other object X presents X
projections, they must be somehow decomposable into a
form that uses the “true” projections. |

 f
In other words, if AxB is a product object, and any other fa 5
object X possesses morphisms f, : X—A and f, : X—B, 4
they must decompose through AxB, as: AXx B

fo=p Sy =S / \
ba DB

With f: X—AxB being a unique morphism. A B






(%2
-
O
P’
Q
-
-
LL




Functors, pictorially

F(id,) = id

| F(A)

for any objectAinC

F(g°f) = F(g)°F(f) for any composable morphisms fand g in C

___________________________

gof B

______________________________________________________

———————— F(g)oF(f)=F(gof)’




Functors, pictorially

—————————————————————————————————————————————————————————————————————————————————

ldA ldF(A):F(ldA)

\l al

A - P F(A)
\idB ldF(B) F(l/

: (1 !
} gof B ————— F-+-> F(B F(g)oF(f)=F(90f)§
i i F(g)

g i i
C -—-———-~——-————:L ————— F ———————————————————— » F(C)
U U
ideo C D idF(c)=F(idc)






What about N.N. architectures?

Dot-Prod. Attention

Q K V
¥

¥ ¥
enflen

| MatMul l

Dot-product
Attention

Attention

Target Source

: 4
Timing @-»i}-)

5x1 ConvStep
Dilation 1
¥

5x1 ConvStep
Dilation 4

[ Dot-Prod. Attention ]

ConvBlock

Inputs

3x1 ConvStep
Dilation 1

]

3x1 ConvStep
Dilation 1

{

S

15x1 ConvStep
Dilation 1

¥

[ Dot-Prod. Attention |

l

Attended Source

15x1 ConvStep
Dilation 4

Pointwise Pointwise
Conv Conv
12

E_

Qutputs

Timing

3x

3x

Input Encoder

Inputs

Mixture of
Experts (opt.)

Iﬁfi

ConvBlock

-

Attention
Encoded
Inputs

2X

I/0 Mixer
Encoded
Inputs Outputs

Attention

3x1 ConvStep
Dilation 1

I ConvBlock l
_Attention

-

Encoded
Outputs

4%

Decoder

Encoded

Inputs

Encoded
OQutputs

3x1 ConvStep
Dilation 1
¥
3x1 ConvStep
Dilation 1

v

Attention

:

Decoded
Outputs


https://arxiv.org/abs/1706.05137

Backpropagation?

VooZ =60
oL _ a-Vs®

l .

awj(k) J

5O = [(w(l+1))Tg’(z+1)] 0 6'Z?)



Probability?




Lecture plan

e How to model parallel processes? (Monoidal categories)
o  Graphical language of string diagrams

e Adding bells and whistles to monoidal categories
o Ability to cross strings
o  Ability to copy/delete information
o  Ability to add/create information

e Deterministic parallel processes (Cartesian Monoidal categories)
e Deterministic bidirectional processes (Lenses)
e General bidirectional processes (Optics)



Monoidal
categories

O



Mon. cats. describe parallel processes

prepare lemon meringue pie
prepared crust
fill crust
lemon 22
lemon unbaked
butter make filling lemon pie
sugar lemon B \_ unbaked
add pie
yolk filling :
egg | separate — ermguc
€88 [\
white
make meringue
sugar )
mermgue




String diagrams

e Originating with Penrose’s graphical notation for tensor networks

— 3 ——
Dsy 4, -3D08 A3, = b3 X3 3, y, "> & T\

Fig. A-1. Diagrammatic representation of a tensor equation.

e Objects - strings
e Morphisms - boxes



Moncats: What's the idea?

C—2 5p c D
A@C—-‘ﬁﬁg——>B®D T€
Exé 2 >¢
(A, CF 2 Aec




Monoidal category: definition

Definition 1.2.1. A monoidal category is a tuple

(G 1,a,A,p)
consisting of:
e acategory C; o
e afunctor ® : C x C —> C called the monoidal product; XOI-
e an object 1 € C called the monoidal unit; I@X:E X


https://arxiv.org/abs/2002.06055

Monoidal category: definition

Definition 1.2.1. A monoidal category is a tuple

(C,®,1,a,A,p)

consisting of:

(1.2.2)

(1.2.3)

a category C;

a functor ® : C x C —> C called the monoidal product;
an object 1 € C called the monoidal unit;

a natural isomorphism

AXY:Z

(X®Y)®Z X®(Y®Z)

for all objects X, Y, Z € C called the associativity isomorphism;
natural isomorphisms

18X —X» X and Xel -2 X

for all objects X € C called the left unit isomorphism and the right unit iso-
morphism, respectively.



https://arxiv.org/abs/2002.06055

...such that these axioms are satisfied

Unity Axioms: The middle unity diagram

(Xol)eY X Xe(18Y)

(1.2.4) pov | |xery

is commutative for all objects X, Y € C. Moreover, the equality

Ag = P1: I®l —=51

holds.

Pentagon Axiom: The pentagon
(WeX)e(Y®Z)
anm&/ \x Y®Z
(WeX)®Y)®Z We(Xe(Y®Z))
(1.2.5)
X,y ®Z Weayy,z
(We(XeY))eZ W IOLE, We((XeY)®Z)


https://arxiv.org/abs/2002.06055
https://arxiv.org/abs/2002.06055

Laws of a monoidal category capture the
geometry of the plane

2
o] # ” g _f’; (Xeew hd‘”)Z@w—g——aM

wo T




Q: Why does ¢ need to be a functor?

fxé ® 5 e FUNCTORIALITY OF @:
(A, D) » Asl (foR)s(get)=(bs5) o (R5c)
(18 ) N
(&\"E ) >BoL NoTATION
( c) ®C A—=op—1oc
' J,g golb =453
(C' F ) F DC@F WE SOMETIMES USE. DIAGRANNATIC' NOTATION,

INVOLVING A SEMICOLON




Q: Why does ¢ need to be a functor?

(Pah.);(ge0)=(ls9)® (Ks5c)

A B | ' C AJ + '

T 1= NP, K

P Y s
—_




String diagrams: sound and complete

A well-typed equation between morphisms in a monoidal category follows
from the axioms if and only if it holds in the graphical language up to
planar isotopy.



Q: Which of these diagrams are equal...

E:I__{l_‘ k j j k f
JI—>AeB | { |F
9: AeB—>(_ gl|n hil9 j
IL: D-———)E@F AP D Ck )
J: E@F——?I ! ! h

|

(1) — (2) 5[: (3)

...in @ monoidal category?



Above diagrams, as equations:

4) DEI@(I@’D) &0ﬂ®l >I®((A03)®(E®F)) I®g @j7I®(C®I)—:—C
2) D=0 sTler Lotk +{(£eF)e(roB)
) D ____) E®F~ E®(I®F) @(EOF)

38 T oCJs1=C

> Fo(TeF) = Eof— T4 5068 -2

USING THE STRUCTURE OF A MOMDIPAL CATEGORY (\p,o)
WE can TRANSFORIT 1) INTO 2) AND BACK

BUT THERE IS No WaY TO TRANSFORF] EITHER ONE INTO 3!



Example: (Set, x, 1)

et X
Je >

g

ok

Xx 1=X
f:Xxj



Example: (Set, L, 2)




e Monoidal categories generalise products and coproducts!

X X
g &

fa | fz fa i f5
A x B AllB



A category can have many monoidal
products



Example: (Vect, ®, R), (Vect, ©, 1)



Example: (Rel, ®, 1)

A a A4 AxC Re? > Bxl

C i 2% (o.,c)/zep(ﬁ,o(_):‘- a Rkl AND
¢ Pel




Example: any monoid

e A monoid is a monoidal category with only identity morphisms

A.’Scé

o' Axh—74

1.4
o |S ASSOCIATIVE Ve, b1 (a,-ﬂ)-c '—'-OL‘(%‘C)
1S UNITAL Yo a4 =«

Aa=c



A monoid is a discrete monoidal category !

—

e (& +0)

o (R*1)

e (List X, concat, [I), where X is any set List V

e (B, AND, True) [1,2,9]#t[t.5)=[4.2,2.¢5]
e (IX,X], °,id,), where X is any set

[



Example: (Euc, %, 1)




Our categories need not be deterministic! | Al

T ——3S

) Comoy ot X—£5y_2 3
e Morphisms are Markov kernels
Xx %
PR WRITE AS f(4lx)
>
FOR EACH x:X [0.1 0.6 0.3
'Zjﬂiﬂxbl Llo.e 04 o2
Y:

-Vy 23l0=0

—y



https://arxiv.org/abs/1908.07021

(FinStoch, ¢, 1)

e Implements stochastic independence
e Atthe level of objects given by cartesian product
e At the level of morphisms given by the Kronecker product of matrices



https://arxiv.org/abs/1908.07021

All of these categories have a lot of
structure!



...but an arbitrary monoidal category doesn't
necessarily possess that structure.



What can't we do in an arbitrary monoidal
category?



(Symmetric monoidal category)




Split/end strings

(Symmetric monoidal category
with a supply of comonoids)



Add/start strings

3

(Symmetric monoidal category
with a supply of monoids)



Idea - interfaces

e Interface based design
e As in computer science, an abstract interface

tells us what operations are available for a
particular object

e |n CT we take this idea rigorously!




Symmetric Monoidal Category



Symmetric Monoidal Category: Definition l

€

e A monoidal category equipped with

O;,a . X@y——_’j®x

—>

—

ré—>



...such that these axioms hold:

e Forall XY:C

| X




...such that these axioms hold:

OX,I

X1 ' y I @ X

e Forall X.C



...such that these axioms hold:

(XQY)®Z
oxey ® Z

(a)(,/ \
X®(Y®2Z) YQRX)®Z
X Q®oyz ay.xX.z2
X®(ZRY) Y ®(X®Z)
(X®2Z)QY

e ForallX Y Z.C




Example of a non-symmetric mon. cat.

e (IX,X], °,id,), where X is any set

GIVEN [,g:X—>X , IT'S NOT NECCESSARILY
THE CASE THAT
Jog =gol



(1) p— (2) po—

...in @ symmetric monoidal category?

0




Recall:

Dot-Prod. Attention

Q K vV
¥ ¥ ¥

GH &)

I MatMul '

Dot-product
Attention

Attention

Target Source

¢ ¥
Timing @»(-i—)

5x1 ConvStep
Dilation 1
¥

5x1 ConvStep
Dilation 4

[ Dot-Prod. Attention |

ConvBlock

Inputs

3x1 ConvStep
Dilation 1

]

3x1 ConvStep
Dilation 1

q

{

15x1 ConvStep
Dilation 1

¥

[ Dot-Prod. Attention ]

l

Attended Source

15x1 ConvStep
Dilation 4

Pointwise Pointwise
Conv Conv
12

E_

Y

Oulputs

Timing

3x

3x

Input Encoder

Inputs

Mixture of
Experts (opt.)

| ConvBlock

Iﬁfi

-

G_

Y

Encoded
Inputs

I/0 Mixer

Encoded
Inputs

Attention

3x1 ConvStep
Dilation 1

| ConvBlock l

Outputs

-

Encoded
Outputs

4%

Decoder

Encoded
Inputs

Encoded
Outputs

3x1 ConvStep
Dilation 1
¥
3x1 ConvStep
Dilation 1

v

l ConvBlock I

Attention

Decoded
Outputs



SMCs with supplies

O



SMC with supplies

e Symmetric monoidal category with a specific structure on each object

Two examples:

e Symmetric monoidal category with a (homomorphic) supply of comonoids
e Symmetric monoidal category with a (homomorphic) supply of monoids



What is a comonoid? IN (Set.x, 1)

A:Sek B:Set

, COPY :B——BxB
'.,4)(/4-—*’7/\ AG ﬁ"——7(ﬁ,£)
v —=A

DELETE s B—>1



What is a comonoid homomorphism?

(8.5.T¢) > (6,06, Te)

TIS A FUNCTION [:B
DIAGRAMS COMMUTE:

>6 SUCH THAT THE FOLLOWING

G
2 56 4 g , 7 —
Ag\l/ \LAG — { 6 —
B\(B IX 0 2 6"6 E—é-)
B—8 o4 £ _ B
e L = .



Comonoid homomorphisms

Deterministic maps



Non-example: FinStoch!

e We cannot slide copy through arbitrary maps!

e Rolling a dice and copying the result is not the same as rolling two dice



A homomorphic supply of comonoids...

o (Set x, 1)
o (Vect,® R)
e (Vecto,1)

° (Evc,x..'l)



...gives a category with products!

Symmetric monoidal category with a homomorphic supply of comonoids
is isomorphic to

a monoidal category whose monoidal product is given by the
category-theoretic product



Operational view

e Gives us an operational characterization of a category with products
e Ability to systematically copy and delete information
e Every map in a cartesian monoidal category is deterministic



Exercise:

e What does a homomorphic supply of monoids give us?



So far:

e Parallel processes (Monoidal categories)
e Crossing of strings (Symmetric monoidal categories)
e Copying/deleting information (Cartesian categories)

2
s ’jﬂ_’; (Xoow oty 2w —2 5n
W

ulx




This gives us the basic building blocks!

Dot-Prod. Attention

Q K V
¥

eafen

l MatMul l

Dot-product
Attention

Attention

Target Source

: 4
Timing @-»i@

5x1 ConvStep
Dilation 1
¥

5x1 ConvStep
Dilation 4

[ Dot-Prod. Attention )

ConvBlock

Inputs

3x1 ConvStep
Dilation 1

]

3x1 ConvStep
Dilation 1

{

S

15x1 ConvStep
Dilation 1

¥

[ Dot-Prod. Attention )

1

Attended Source

15x1 ConvStep
Dilation 4

Pointwise Pointwise
Conv Conv
12

E_

Qutputs

Timing

3x

3x

Input Encoder

Inputs

ConvBlock

Mixture of
Experts (opt.)

I%

ConvBlock

-

Attention
Encoded
Inputs

2X

I/0 Mixer
Encoded
Inputs Outputs

Attention

3x1 ConvStep
Dilation 1

I ConvBlock l
—Attention

Encoded
Outputs

4%

Decoder

Encoded

Inpults

Encoded
OQutputs

3x1 ConvStep
Dilation 1
¥
3x1 ConvStep
Dilation 1

v

Attention

:

Outputs


https://arxiv.org/abs/1706.05137

Reverse Derivative Ascent:
A Categorical Approach to Learning Boolean Circuits

Paul Wilson Fabio Zanasi
University College London University College London
University of Southampton f.zanasi@ucl.ac.uk

paul@statusfailed.com

We introduce Reverse Derivative Ascent: a categorical analogue of gradient based methods for ma-
chine learning. Our algorithm is defined at the level of so-called reverse differential categories. It can
be used to learn the parameters of models which are expressed as morphisms of such categories. Our
motivating example is boolean circuits: we show how our algorithm can be applied to such circuits
by using the theory of reverse differential categories. Note our methodology allows us to learn the
parameters of boolean circuits directly, in contrast to existing binarised neural network approaches.
Moreover, we demonstrate its empirical value by giving experimental results on benchmark machine
learning datasets.




What about a category where morphisms have
a forward and a backward component?



Recall

Voo = 6"
E = a}gl—l) 0]
" )
awj(k) J

5O = [(w(l+1))Tg’(z+1)] 0 6'Z?)



Lenses




What is a lens?

_,
| ANIMATION

S put —

e Lenses model deterministic bidirectional processes
e Give us a high-level view of the bidirectional computation pattern



A lens consists of two parts

Forward map Backward map

Y D)
= : 5 <kl —

L ANIMATION



Lenses form a category

e Starting with any cartesian category C...

.. we can form a category Lens(C) defined as follows...



Category of Lenses: Definition

DEF. THE CATEGORY  Lem(€)
-OBJECTS - PARS OF OBJECTS INE  (})

- MORPHISM  (2)——=(5) 1S A" PAIR (siue; ) WHERE:

i A—P

AND ARE MORPHISMS IN €.
Ww(iAxB'—’A'




Lens composition
THE COMPOSITE OF

(e==tB) w0 (B)=4) wnere

e, A — B W'B\é(,
xqw[, AXB A/«/W( BXC—_B

< ) o) ( ) WHERE

=

o= Ac C-—-—>A Vs ” ”"CA Bu( Ptz p B4

oA



Lens composition

= A al >B b >
,u,::AxC'A“C;AxAxC' A"”‘KgAxBxC' Am%AxB'

WRITTEN IN A DIFFERENT FORM:

W ()=, (we(a))

i (0.0)= st (o, a(wra), )

M’jA’




Exercise: l

Starting from a monoidal category, where in the definition of Lens(C) are we
using the fact that morphism of C are comonoid homomorphisms?



Examples of
Lenses

O



Derivatives as lenses

f( ))((;] ) 2x 2+ X,
WhY-151 G
V ,22 ”21 ) ”2 3 ”2 LENVS




Derivatives as lenses

THIS IS A LEWS!
A MORPHISM IV Lews(Eue) (Ew 1)

wsw'

£

"UPDATE"




Chain rule as lens composition
2__ {4 cos Veos:RxR—
(Z ’ K 4 lz (x,olz)n—:(ﬁ-,,,_x) ol
R“l) (I/V}) ( () (cos, Vet) ,Q)
p1—le!"

spol (2, ¢) = apd (e, sy (it ). ) )
VA (L], s (4 L’],O‘v))
W([mldg)n——ﬁ(sw,y,) = VHL 'S p mn (9,( } 4 g_xz dy )

- 7%, )&
(6’("’% (% ) - ((}%h%) dy)




Backprop: functor Euc — Lens(Euc)
Euc— DLW( W—) 4,___> LENS
R+ >R R

[} l(p,vz) _ 5 —2 CHART"
R >R k")



https://arxiv.org/abs/1908.02202

Optimisers as lenses

GRADIENT DESCENT

(IRP> (""""'“"‘)>(I?P) prisur(w) = w
RP < RP WU((W,AW): wW- o Aw




Optimisers as lenses

MOMENTUM

K xlpp) (mw,ufl)> (
)< '




Optimisers as lenses

NESTERQOV
MOMENTUM
Bk ) oK) ey T

UI%Q/’C /V-—-f/lf +cLAw

UWe,,= W, - /g



Moore machines as lenses

0:S5—>0
e Sx I S

(8)2(2)




But we can do more

e There's a particular way of categorically looking at bidirectional processes

e More general form, not restricted to deterministic processes

e Gives us aninsight into the internal workings of lenses



Optics




Optics

e Optics model contextual bidirectional transformations
o Probabilistic bidirectional transformations
o Bidirectional transformations with side-effects
o Bidirectional transformations that operate on containers

« LENSES —l—  CARTESIAN MONOIOAL CATEEORY

e Optics assume the base is a symmetric monoidal category C



Optics: Definition

DEF. THE CATEGORY  Cnte(€)
-OBJECTS - PAIRS OF OBIECTS INE  (})
- MORPHISM  (§)—(5) IS A TRIPLE (M.£.6) WHERE:

M€ SAN OBJECT OF €

ARE MORPHISMS IN €.



How do optics compose?

ANIMATION




Composition formula
THE COMPOSITE OF

(4 L2 (8) o (B)™LE()  whewe

C
M,,“C Mz:e
{,-A—MeB J,.B—MeC
L; M ®B'——> A' er ‘M ®C.—>B

S



Optic(Set)



Optic(C) = Lens(C) when C is Cartesian



Optic(C) = Lens(C) when C is Cartesian l

e Exercise: Prove that there is a functor G:Lens(C) -> Optic(C) such that F and
G form an isomorphism.



Optics allow us to do more



Optic(FinStoch)

Bayesian open games

Joe Bolt, Jules Hedges, and Philipp Zahn

This paper generalises the treatment of compositional game theory as intro-
duced by the second and third authors with Ghani and Winschel, where games
are modelled as morphisms of a symmetric monoidal category. From an eco-
nomic modelling perspective, the existing notion of an open game is not ex-
pressive enough for many applications. This includes stochastic environments,
stochastic choices by players, as well as incomplete information regarding the
game being played. The current paper addresses these three issue all at once.
To achieve this we make significant use of category theory, especially the ‘coend
optics’ of Riley.



Motivation for Optics is 2-categorical!

Space-time tradeoffs of lenses and optics via
higher category theory

Bruno Gavranovié

September 21, 2022

Abstract

Optics and lenses are abstract categorical gadgets that model systems
with bidirectional data flow. In this paper we observe that the denota-
tional definition of optics — identifying two optics as equivalent by ob-
serving their behaviour from the outside — is not suitable for operational,
software oriented approaches where optics are not merely observed, but
built with their internal setups in mind. We identify operational dif-
ferences between denotationally isomorphic categories of cartesian optics
and lenses: their different composition rule and corresponding space-time
tradeoffs, positioning them at two opposite ends of a spectrum. With
these motivations we lift the existing categorical constructions and their
relationships to the 2-categorical level, showing that the relevant oper-
ational concerns become visible. We define the 2-category 2-Optic(C)
whose 2-cells explicitly optics’ internal configuration. We show that the
1-category Optic(C) arises by locally quotienting out the connected com-
ponents of this 2-category. We show that the embedding of lenses into
cartesian optics gets weakened from a functor to an oplax functor whose
oplaxator now detects the different composition rule. We determine the
difficulties in showing this functor forms a part of an adjunction in any of
the standard 2-categories. We establish a conjecture that the well-known
isomorphism between cartesian lenses and optics arises out of the lax
2-adjunction between their double-categorical counterparts. In addition
to presenting new research, this paper is also meant to be an accessible
introduction to the topic.



Value iteration

Value iteration is optic composition

Jules Hedges Riu Rodriguez Sakamoto

Dynamic programming is a class of algorithms used to compute optimal control policies for Markov
decision processes. Dynamic programming is ubiquitous in control theory, and is also the foundation
of reinforcement learning. In this paper, we show that value improvement, one of the main steps of
dynamic programming, can be naturally seen as composition in a category of optics, and intuitively,
the optimal value function is the limit of a chain of optic compositions. We illustrate this with three
classic examples: the gridworld, the inverted pendulum and the savings problem. This is a first step
towards a complete account of reinforcement learning in terms of parametrised optics.



Bayes' Law!

Bayesian Updates Compose Optically

Toby St. Clere Smithe

Department of Experimental Psychology,
University of Oxford

arxivetsmithe.net

July 29, 2020

Bayes’ rule tells us how to invert a causal process in order to update our beliefs in light of
new evidence. If the process is believed to have a complex compositional structure, we may ask
whether composing the inversions of the component processes gives the same belief update as the
inversion of the whole. We answer this question affirmatively, showing that the relevant compo-
sitional structure is precisely that of the lens pattern, and that we can think of Bayesian inversion
as a particular instance of a state-dependent morphism in a corresponding fibred category. We
define a general notion of (mixed) Bayesian lens, and discuss the (un)lawfulness of these lenses
when their contravariant components are exact Bayesian inversions. We prove our main result
both abstractly and concretely, for both discrete and continuous states, taking care to illustrate
the common structures.



Summary!

e Category theory gives us an rich language for describing processes found
in neural networks

e Monoidal categories with supplies of comonoids, monoids

e With Optics, uniform way to model
o Backpropagation
o Bayes’ Law
o Value iteration



Thank you!

Questions?

>

C A
l At j{ bruno@brunogavranovic.com
o )

—




